Geometrical interpretation of the multi-point flux approximation L-method
In this paper, we first investigate the influence of different Dirichlet boundary discretizations on the convergence rate of the multi‐point flux approximation (MPFA) L‐method by the numerical comparisons between the MPFA O‐ and L‐method, and show how important it is for this new method to handle Di...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in fluids 2009-08, Vol.60 (11), p.1173-1199 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we first investigate the influence of different Dirichlet boundary discretizations on the convergence rate of the multi‐point flux approximation (MPFA) L‐method by the numerical comparisons between the MPFA O‐ and L‐method, and show how important it is for this new method to handle Dirichlet boundary conditions in a suitable way. A new Dirichlet boundary strategy is proposed, which in some sense can well recover the superconvergence rate of the normal velocity. In the second part of the work, the MPFA L‐method with homogeneous media is studied. A systematic concept and geometrical interpretations of the L‐method are given and illustrated, which yield more insight into the L‐method. Finally, we apply the MPFA L‐method for two‐phase flow in porous media on different quadrilateral grids and compare its numerical results for the pressure and saturation with the results of the two‐point flux approximation method. Copyright © 2008 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0271-2091 1097-0363 1097-0363 |
DOI: | 10.1002/fld.1926 |