Fabrication and testing of bulk micromachined silicon carbide piezoresistive pressure sensors for high temperature applications

This paper explores the development of high-temperature pressure sensors based on polycrystalline and single-crystalline 3C-SiC piezoresistors and fabricated by bulk micromachining the underlying 100-mm diameter (100) silicon substrate. In one embodiment, phosphorus-doped APCVD polycrystalline 3C-Si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2006-04, Vol.6 (2), p.316-324
Hauptverfasser: Chien-Hung Wu, Zorman, C.A., Mehregany, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper explores the development of high-temperature pressure sensors based on polycrystalline and single-crystalline 3C-SiC piezoresistors and fabricated by bulk micromachining the underlying 100-mm diameter (100) silicon substrate. In one embodiment, phosphorus-doped APCVD polycrystalline 3C-SiC (poly-SiC) was used for the piezoresistors and sensor diaphragm, with LPCVD silicon nitride employed to electrically isolate the piezoresistor from the diaphragm. These piezoresistors fabricated from poly-SiC films deposited at different temperatures and doping levels were characterized, showing -2.1 as the best gauge factor and exhibited a sensitivities up to 20.9-mV/V*psi at room temperature. In a second embodiment, epitaxially-grown unintentionally nitrogen-doped single-crystalline 3C-SiC piezoresistors were fabricated on silicon diaphragms, with thermally grown silicon dioxide employed for the piezoresistor electrical isolation from the diaphragm. The associated 3C-SiC/SiO/sub 2//Si substrate was fabricated by bonding a (100) silicon wafer carrying the 3C-SiC onto a silicon wafer with thermal oxide covering its surface. The 3C-SiC handle wafer was then etched away in KOH. The diaphragm was fabricated by time etching the silicon substrate. The sensors were tested at temperatures up to 400/spl deg/C and exhibited a sensitivity of 177.6-mV/V*psi at room temperature and 63.1-mV/V*psi at 400/spl deg/C. The estimated longitudinal gauge factor of 3C-SiC piezoresistors along the [100] direction was estimated at about -18 at room temperature and -7 at 400/spl deg/C.
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2006.870145