Hybrid-Trefftz stress element for bounded and unbounded poroelastic media

The equations that govern the dynamic response of saturated porous media are first discretized in time to define the boundary value problem that supports the formulation of the hybrid‐Trefftz stress element. The (total) stress and pore pressure fields are directly approximated under the condition of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2011-03, Vol.85 (10), p.1280-1305
Hauptverfasser: de Freitas, J. A. Teixeira, Moldovan, I. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The equations that govern the dynamic response of saturated porous media are first discretized in time to define the boundary value problem that supports the formulation of the hybrid‐Trefftz stress element. The (total) stress and pore pressure fields are directly approximated under the condition of locally satisfying the domain conditions of the problem. The solid displacement and the outward normal component of the seepage displacement are approximated independently on the boundary of the element. Unbounded domains are modelled using either unbounded elements that locally satisfy the Sommerfeld condition or absorbing boundary elements that enforce that condition in weak form. As the finite element equations are derived from first‐principles, the associated energy statements are recovered and the sufficient conditions for the existence and uniqueness of the solutions are stated. The performance of the element is illustrated with the time domain response of a biphasic unbounded domain to show the quality of the modelling that can be attained for the stress, pressure, displacement and seepage fields using a high‐order, wavelet‐based time integration procedure. Copyright © 2010 John Wiley & Sons, Ltd.
ISSN:0029-5981
1097-0207
1097-0207
DOI:10.1002/nme.3015