Real-time hierarchical stereo Visual SLAM in large-scale environments
In this paper we present a new real-time hierarchical (topological/metric) Visual SLAM system focusing on the localization of a vehicle in large-scale outdoor urban environments. It is exclusively based on the visual information provided by a cheap wide-angle stereo camera. Our approach divides the...
Gespeichert in:
Veröffentlicht in: | Robotics and autonomous systems 2010-08, Vol.58 (8), p.991-1002 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we present a new real-time hierarchical (topological/metric) Visual SLAM system focusing on the localization of a vehicle in large-scale outdoor urban environments. It is exclusively based on the visual information provided by a cheap wide-angle stereo camera. Our approach divides the whole map into local sub-maps identified by the so-called fingerprints (vehicle poses). At the sub-map level (low level SLAM), 3D sequential mapping of natural landmarks and the robot location/orientation are obtained using a top-down Bayesian method to model the dynamic behavior. A higher topological level (high level SLAM) based on fingerprints has been added to reduce the global accumulated drift, keeping real-time constraints. Using this hierarchical strategy, we keep the local consistency of the metric sub-maps, by mean of the EKF, and global consistency by using the topological map and the MultiLevel Relaxation (MLR) algorithm. Some experimental results for different large-scale outdoor environments are presented, showing an almost constant processing time. |
---|---|
ISSN: | 0921-8890 1872-793X |
DOI: | 10.1016/j.robot.2010.03.016 |