Microstructure and polarization characteristics of anode supported tubular solid oxide fuel cell with co-precipitated and mechanically mixed Ni-YSZ anodes

An anode support tubular solid oxide fuel cell (SOFC) is fabricated and the dependence of its polarization resistance on anode microstructural parameters is investigated by means of stereology and concept of contiguity (c-c) theory. Nickel yttria-stabilized zirconia (Ni-YSZ) anode supported cell wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2009-09, Vol.193 (2), p.530-540
Hauptverfasser: Shikazono, Naoki, Sakamoto, Yusuke, Yamaguchi, Yu, Kasagi, Nobuhide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An anode support tubular solid oxide fuel cell (SOFC) is fabricated and the dependence of its polarization resistance on anode microstructural parameters is investigated by means of stereology and concept of contiguity (c-c) theory. Nickel yttria-stabilized zirconia (Ni-YSZ) anode supported cell with YSZ electrolyte, lanthanum–strontium–manganite (LSM)-YSZ composite cathode, and LSM cathode layers is fabricated by dip coating. Submicrometer resolution images of anode microstructure are successfully obtained by low voltage SEM-EDX and quantified by stereological analysis. Cell voltage measurements and impedance spectroscopy are performed at temperatures of 650 and 750 °C with hydrogen and nitrogen mixture gas as a fuel. A quantitative relationship between polarization resistance and microstructural parameters such as circularity, three-phase boundary length, contiguity, etc. is investigated using the concept of contiguity (c-c) theory. The effectiveness of correlating polarization resistance of anode supported tubular SOFC using stereology and c-c theory is evaluated.
ISSN:0378-7753
1873-2755
DOI:10.1016/j.jpowsour.2009.04.031