Snaking and isolas of localised states in bistable discrete lattices

We consider localised states in a discrete bistable Allen–Cahn equation. This model equation combines bistability and local cell-to-cell coupling in the simplest possible way. The existence of stable localised states is made possible by pinning to the underlying lattice; they do not exist in the equ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. A 2010-11, Vol.375 (1), p.14-22
Hauptverfasser: Taylor, Chris, Dawes, Jonathan H.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider localised states in a discrete bistable Allen–Cahn equation. This model equation combines bistability and local cell-to-cell coupling in the simplest possible way. The existence of stable localised states is made possible by pinning to the underlying lattice; they do not exist in the equivalent continuum equation. In particular we address the existence of ‘isolas’: closed curves of solutions in the bifurcation diagram. Isolas appear for some non-periodic boundary conditions in one spatial dimension but seem to appear generically in two dimensions. We point out how features of the bifurcation diagram in 1D help to explain some (unintuitive) features of the bifurcation diagram in 2D.
ISSN:0375-9601
1873-2429
DOI:10.1016/j.physleta.2010.10.010