Unsupervised classification of polarimetric synthetic aperture Radar images using fuzzy clustering and EM clustering

Five clustering techniques are compared by classifying a polarimetric synthetic aperture radar image. The pixels are complex covariance matrices, which are known to have the complex Wishart distribution. Two techniques are fuzzy clustering algorithms based on the standard /spl lscr//sub 1/ and /spl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2005-03, Vol.43 (3), p.519-527
Hauptverfasser: Kersten, P.R., Jong-Sen Lee, Ainsworth, T.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 527
container_issue 3
container_start_page 519
container_title IEEE transactions on geoscience and remote sensing
container_volume 43
creator Kersten, P.R.
Jong-Sen Lee
Ainsworth, T.L.
description Five clustering techniques are compared by classifying a polarimetric synthetic aperture radar image. The pixels are complex covariance matrices, which are known to have the complex Wishart distribution. Two techniques are fuzzy clustering algorithms based on the standard /spl lscr//sub 1/ and /spl lscr//sub 2/ metrics. Two others are new, combining a robust fuzzy C-means clustering technique with a distance measure based on the Wishart distribution. The fifth clustering technique is an application of the expectation-maximization algorithm assuming the data are Wishart. The clustering algorithms that are based on the Wishart are demonstrably more effective than the clustering algorithms that appeal only to the /spl lscr//sub p/ norms. The results support the conclusion that the pixel model is more important than the clustering mechanism.
doi_str_mv 10.1109/TGRS.2004.842108
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_896213032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1396324</ieee_id><sourcerecordid>2352080791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-2613db69cc68c19725db30ef011b14074ab35be14672193cac9b219abbe4c44b3</originalsourceid><addsrcrecordid>eNqNkcFrFTEQxoMo-Ky9F7wsHuxpnzNJNrs5SqlVqAi1PYckO1tT9u0-k6zw-tc3yxMUD-JphuH3DTPfx9gZwhYR9Pvbq5tvWw4gt53kCN0ztsGm6WpQUj5nG0Ctat5p_pK9SukBAGWD7Ybluykte4o_Q6K-8qNNKQzB2xzmqZqHaj-PNoYd5Rh8lQ5T_k65dLZI8hKpurG9jVXY2XtK1ZLCdF8Ny-PjoaxaUqa4DuzUV5df_pi8Zi8GOyY6_VVP2N3Hy9uLT_X116vPFx-uay8byDVXKHqntPeq86hb3vROAA2A6FBCK60TjSOUquWohbdeu9JY50h6KZ04YefHvfs4_1goZbMLydM42onmJZlOK44CBC_ku3-SxTktlcT_AKEF7EQB3_4FPsxLnMq7plOtkuvFBYIj5OOcUqTB7IvZNh4MglljNWusZo3VHGMtkjdHSSCi37jQSnApngCWDp_n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867642193</pqid></control><display><type>article</type><title>Unsupervised classification of polarimetric synthetic aperture Radar images using fuzzy clustering and EM clustering</title><source>IEEE Electronic Library (IEL)</source><creator>Kersten, P.R. ; Jong-Sen Lee ; Ainsworth, T.L.</creator><creatorcontrib>Kersten, P.R. ; Jong-Sen Lee ; Ainsworth, T.L.</creatorcontrib><description>Five clustering techniques are compared by classifying a polarimetric synthetic aperture radar image. The pixels are complex covariance matrices, which are known to have the complex Wishart distribution. Two techniques are fuzzy clustering algorithms based on the standard /spl lscr//sub 1/ and /spl lscr//sub 2/ metrics. Two others are new, combining a robust fuzzy C-means clustering technique with a distance measure based on the Wishart distribution. The fifth clustering technique is an application of the expectation-maximization algorithm assuming the data are Wishart. The clustering algorithms that are based on the Wishart are demonstrably more effective than the clustering algorithms that appeal only to the /spl lscr//sub p/ norms. The results support the conclusion that the pixel model is more important than the clustering mechanism.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2004.842108</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Classification ; Clustering ; Clustering algorithms ; Covariance matrix ; Fuzzy ; Fuzzy clustering ; Fuzzy logic ; Fuzzy set theory ; Image classification ; Polarimetric synthetic aperture radar ; polarimetric synthetic aperture radar (POLSAR) ; Probability distribution ; Robustness ; Statistical analysis ; Statistical distributions ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; Testing</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2005-03, Vol.43 (3), p.519-527</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-2613db69cc68c19725db30ef011b14074ab35be14672193cac9b219abbe4c44b3</citedby><cites>FETCH-LOGICAL-c450t-2613db69cc68c19725db30ef011b14074ab35be14672193cac9b219abbe4c44b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1396324$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1396324$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kersten, P.R.</creatorcontrib><creatorcontrib>Jong-Sen Lee</creatorcontrib><creatorcontrib>Ainsworth, T.L.</creatorcontrib><title>Unsupervised classification of polarimetric synthetic aperture Radar images using fuzzy clustering and EM clustering</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Five clustering techniques are compared by classifying a polarimetric synthetic aperture radar image. The pixels are complex covariance matrices, which are known to have the complex Wishart distribution. Two techniques are fuzzy clustering algorithms based on the standard /spl lscr//sub 1/ and /spl lscr//sub 2/ metrics. Two others are new, combining a robust fuzzy C-means clustering technique with a distance measure based on the Wishart distribution. The fifth clustering technique is an application of the expectation-maximization algorithm assuming the data are Wishart. The clustering algorithms that are based on the Wishart are demonstrably more effective than the clustering algorithms that appeal only to the /spl lscr//sub p/ norms. The results support the conclusion that the pixel model is more important than the clustering mechanism.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Covariance matrix</subject><subject>Fuzzy</subject><subject>Fuzzy clustering</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Image classification</subject><subject>Polarimetric synthetic aperture radar</subject><subject>polarimetric synthetic aperture radar (POLSAR)</subject><subject>Probability distribution</subject><subject>Robustness</subject><subject>Statistical analysis</subject><subject>Statistical distributions</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>Testing</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkcFrFTEQxoMo-Ky9F7wsHuxpnzNJNrs5SqlVqAi1PYckO1tT9u0-k6zw-tc3yxMUD-JphuH3DTPfx9gZwhYR9Pvbq5tvWw4gt53kCN0ztsGm6WpQUj5nG0Ctat5p_pK9SukBAGWD7Ybluykte4o_Q6K-8qNNKQzB2xzmqZqHaj-PNoYd5Rh8lQ5T_k65dLZI8hKpurG9jVXY2XtK1ZLCdF8Ny-PjoaxaUqa4DuzUV5df_pi8Zi8GOyY6_VVP2N3Hy9uLT_X116vPFx-uay8byDVXKHqntPeq86hb3vROAA2A6FBCK60TjSOUquWohbdeu9JY50h6KZ04YefHvfs4_1goZbMLydM42onmJZlOK44CBC_ku3-SxTktlcT_AKEF7EQB3_4FPsxLnMq7plOtkuvFBYIj5OOcUqTB7IvZNh4MglljNWusZo3VHGMtkjdHSSCi37jQSnApngCWDp_n</recordid><startdate>20050301</startdate><enddate>20050301</enddate><creator>Kersten, P.R.</creator><creator>Jong-Sen Lee</creator><creator>Ainsworth, T.L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7U5</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20050301</creationdate><title>Unsupervised classification of polarimetric synthetic aperture Radar images using fuzzy clustering and EM clustering</title><author>Kersten, P.R. ; Jong-Sen Lee ; Ainsworth, T.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-2613db69cc68c19725db30ef011b14074ab35be14672193cac9b219abbe4c44b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Covariance matrix</topic><topic>Fuzzy</topic><topic>Fuzzy clustering</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Image classification</topic><topic>Polarimetric synthetic aperture radar</topic><topic>polarimetric synthetic aperture radar (POLSAR)</topic><topic>Probability distribution</topic><topic>Robustness</topic><topic>Statistical analysis</topic><topic>Statistical distributions</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kersten, P.R.</creatorcontrib><creatorcontrib>Jong-Sen Lee</creatorcontrib><creatorcontrib>Ainsworth, T.L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kersten, P.R.</au><au>Jong-Sen Lee</au><au>Ainsworth, T.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised classification of polarimetric synthetic aperture Radar images using fuzzy clustering and EM clustering</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2005-03-01</date><risdate>2005</risdate><volume>43</volume><issue>3</issue><spage>519</spage><epage>527</epage><pages>519-527</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Five clustering techniques are compared by classifying a polarimetric synthetic aperture radar image. The pixels are complex covariance matrices, which are known to have the complex Wishart distribution. Two techniques are fuzzy clustering algorithms based on the standard /spl lscr//sub 1/ and /spl lscr//sub 2/ metrics. Two others are new, combining a robust fuzzy C-means clustering technique with a distance measure based on the Wishart distribution. The fifth clustering technique is an application of the expectation-maximization algorithm assuming the data are Wishart. The clustering algorithms that are based on the Wishart are demonstrably more effective than the clustering algorithms that appeal only to the /spl lscr//sub p/ norms. The results support the conclusion that the pixel model is more important than the clustering mechanism.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2004.842108</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2005-03, Vol.43 (3), p.519-527
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_miscellaneous_896213032
source IEEE Electronic Library (IEL)
subjects Algorithms
Classification
Clustering
Clustering algorithms
Covariance matrix
Fuzzy
Fuzzy clustering
Fuzzy logic
Fuzzy set theory
Image classification
Polarimetric synthetic aperture radar
polarimetric synthetic aperture radar (POLSAR)
Probability distribution
Robustness
Statistical analysis
Statistical distributions
Synthetic aperture radar
synthetic aperture radar (SAR)
Testing
title Unsupervised classification of polarimetric synthetic aperture Radar images using fuzzy clustering and EM clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T17%3A43%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20classification%20of%20polarimetric%20synthetic%20aperture%20Radar%20images%20using%20fuzzy%20clustering%20and%20EM%20clustering&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Kersten,%20P.R.&rft.date=2005-03-01&rft.volume=43&rft.issue=3&rft.spage=519&rft.epage=527&rft.pages=519-527&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2004.842108&rft_dat=%3Cproquest_RIE%3E2352080791%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867642193&rft_id=info:pmid/&rft_ieee_id=1396324&rfr_iscdi=true