Unsupervised classification of polarimetric synthetic aperture Radar images using fuzzy clustering and EM clustering
Five clustering techniques are compared by classifying a polarimetric synthetic aperture radar image. The pixels are complex covariance matrices, which are known to have the complex Wishart distribution. Two techniques are fuzzy clustering algorithms based on the standard /spl lscr//sub 1/ and /spl...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2005-03, Vol.43 (3), p.519-527 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Five clustering techniques are compared by classifying a polarimetric synthetic aperture radar image. The pixels are complex covariance matrices, which are known to have the complex Wishart distribution. Two techniques are fuzzy clustering algorithms based on the standard /spl lscr//sub 1/ and /spl lscr//sub 2/ metrics. Two others are new, combining a robust fuzzy C-means clustering technique with a distance measure based on the Wishart distribution. The fifth clustering technique is an application of the expectation-maximization algorithm assuming the data are Wishart. The clustering algorithms that are based on the Wishart are demonstrably more effective than the clustering algorithms that appeal only to the /spl lscr//sub p/ norms. The results support the conclusion that the pixel model is more important than the clustering mechanism. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2004.842108 |