Unsupervised classification of polarimetric synthetic aperture Radar images using fuzzy clustering and EM clustering

Five clustering techniques are compared by classifying a polarimetric synthetic aperture radar image. The pixels are complex covariance matrices, which are known to have the complex Wishart distribution. Two techniques are fuzzy clustering algorithms based on the standard /spl lscr//sub 1/ and /spl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2005-03, Vol.43 (3), p.519-527
Hauptverfasser: Kersten, P.R., Jong-Sen Lee, Ainsworth, T.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Five clustering techniques are compared by classifying a polarimetric synthetic aperture radar image. The pixels are complex covariance matrices, which are known to have the complex Wishart distribution. Two techniques are fuzzy clustering algorithms based on the standard /spl lscr//sub 1/ and /spl lscr//sub 2/ metrics. Two others are new, combining a robust fuzzy C-means clustering technique with a distance measure based on the Wishart distribution. The fifth clustering technique is an application of the expectation-maximization algorithm assuming the data are Wishart. The clustering algorithms that are based on the Wishart are demonstrably more effective than the clustering algorithms that appeal only to the /spl lscr//sub p/ norms. The results support the conclusion that the pixel model is more important than the clustering mechanism.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2004.842108