Non-Weyl resonance asymptotics for quantum graphs in a magnetic field

We study asymptotical behaviour of resonances for a quantum graph consisting of a finite internal part and external leads placed into a magnetic field, in particular, the question whether their number follows the Weyl law. We prove that the presence of a magnetic field cannot change a non-Weyl asymp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. A 2011-01, Vol.375 (4), p.805-807
Hauptverfasser: Exner, Pavel, Lipovský, Jiří
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study asymptotical behaviour of resonances for a quantum graph consisting of a finite internal part and external leads placed into a magnetic field, in particular, the question whether their number follows the Weyl law. We prove that the presence of a magnetic field cannot change a non-Weyl asymptotics into a Weyl one and vice versa. On the other hand, we present examples demonstrating that for some non-Weyl graphs the “effective size” of the graph, and therefore the resonance asymptotics, can be affected by the magnetic field.
ISSN:0375-9601
1873-2429
DOI:10.1016/j.physleta.2010.12.042