Automatic Identification of Impairments Using Support Vector Machine Pattern Classification on Eye Diagrams
We have demonstrated powerful new techniques for identifying the optical impairments causing the degradation of an optical channel. We use machine learning and pattern classification techniques on eye diagrams to identify the optical impairments. These capabilities can enable the development of low-...
Gespeichert in:
Veröffentlicht in: | IEEE photonics technology letters 2006-11, Vol.18 (22), p.2398-2400 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2400 |
---|---|
container_issue | 22 |
container_start_page | 2398 |
container_title | IEEE photonics technology letters |
container_volume | 18 |
creator | Skoog, R.A. Banwell, T.C. Gannett, J.W. Habiby, S.F. Pang, M. Rauch, M.E. Toliver, P. |
description | We have demonstrated powerful new techniques for identifying the optical impairments causing the degradation of an optical channel. We use machine learning and pattern classification techniques on eye diagrams to identify the optical impairments. These capabilities can enable the development of low-cost optical performance monitors having significant diagnostic capabilities |
doi_str_mv | 10.1109/LPT.2006.886146 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_896205985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4012069</ieee_id><sourcerecordid>2346222911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-e0c3f7599b5202bdfc637a6058a59a091987d00020e0d4456fc0bdf70f28a2363</originalsourceid><addsrcrecordid>eNpdkEFPAjEQhTdGExE9e_DSePEETLfbbns0iEqCkUTw2pTSxSK7XdvugX9vCcYYT_Nm8r2XycuyawxDjEGMZvPFMAdgQ84ZLthJ1sOiwAPAZXGaNCSNMaHn2UUIWwBcUFL0ss_7LrpaRavRdG2aaCur0-Ya5Co0rVtlfZ3OAS2DbTborWtb5yN6Nzo6j16U_rCNQXMVo_ENGu9UCH8iGjTZG_Rg1carOlxmZ5XaBXP1M_vZ8nGyGD8PZq9P0_H9bKAJY3FgQJOqpEKsaA75al1pRkrFgHJFhQKBBS_XAJCDgXVRUFZpSFQJVc5VThjpZ3fH3Na7r86EKGsbtNntVGNcFyQXLAcqOE3k7T9y6zrfpOckZ4zQkgueoNER0t6F4E0lW29r5fcSgzxUL1P18lC9PFafHDdHhzXG_NIF4ByYIN8nmn-S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866357898</pqid></control><display><type>article</type><title>Automatic Identification of Impairments Using Support Vector Machine Pattern Classification on Eye Diagrams</title><source>IEEE/IET Electronic Library</source><creator>Skoog, R.A. ; Banwell, T.C. ; Gannett, J.W. ; Habiby, S.F. ; Pang, M. ; Rauch, M.E. ; Toliver, P.</creator><creatorcontrib>Skoog, R.A. ; Banwell, T.C. ; Gannett, J.W. ; Habiby, S.F. ; Pang, M. ; Rauch, M.E. ; Toliver, P.</creatorcontrib><description>We have demonstrated powerful new techniques for identifying the optical impairments causing the degradation of an optical channel. We use machine learning and pattern classification techniques on eye diagrams to identify the optical impairments. These capabilities can enable the development of low-cost optical performance monitors having significant diagnostic capabilities</description><identifier>ISSN: 1041-1135</identifier><identifier>EISSN: 1941-0174</identifier><identifier>DOI: 10.1109/LPT.2006.886146</identifier><identifier>CODEN: IPTLEL</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Channels ; Classification ; Degradation ; Diagnostic systems ; Impairment ; Machine learning ; Monitoring ; Monitors ; Optical character recognition software ; Optical computing ; optical performance monitoring (OPM) ; Pattern classification ; pattern recognition ; Photonics ; Signal analysis ; Signal processing ; Support vector machine classification ; Support vector machines</subject><ispartof>IEEE photonics technology letters, 2006-11, Vol.18 (22), p.2398-2400</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-e0c3f7599b5202bdfc637a6058a59a091987d00020e0d4456fc0bdf70f28a2363</citedby><cites>FETCH-LOGICAL-c366t-e0c3f7599b5202bdfc637a6058a59a091987d00020e0d4456fc0bdf70f28a2363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4012069$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4012069$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Skoog, R.A.</creatorcontrib><creatorcontrib>Banwell, T.C.</creatorcontrib><creatorcontrib>Gannett, J.W.</creatorcontrib><creatorcontrib>Habiby, S.F.</creatorcontrib><creatorcontrib>Pang, M.</creatorcontrib><creatorcontrib>Rauch, M.E.</creatorcontrib><creatorcontrib>Toliver, P.</creatorcontrib><title>Automatic Identification of Impairments Using Support Vector Machine Pattern Classification on Eye Diagrams</title><title>IEEE photonics technology letters</title><addtitle>LPT</addtitle><description>We have demonstrated powerful new techniques for identifying the optical impairments causing the degradation of an optical channel. We use machine learning and pattern classification techniques on eye diagrams to identify the optical impairments. These capabilities can enable the development of low-cost optical performance monitors having significant diagnostic capabilities</description><subject>Channels</subject><subject>Classification</subject><subject>Degradation</subject><subject>Diagnostic systems</subject><subject>Impairment</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>Monitors</subject><subject>Optical character recognition software</subject><subject>Optical computing</subject><subject>optical performance monitoring (OPM)</subject><subject>Pattern classification</subject><subject>pattern recognition</subject><subject>Photonics</subject><subject>Signal analysis</subject><subject>Signal processing</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><issn>1041-1135</issn><issn>1941-0174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFPAjEQhTdGExE9e_DSePEETLfbbns0iEqCkUTw2pTSxSK7XdvugX9vCcYYT_Nm8r2XycuyawxDjEGMZvPFMAdgQ84ZLthJ1sOiwAPAZXGaNCSNMaHn2UUIWwBcUFL0ss_7LrpaRavRdG2aaCur0-Ya5Co0rVtlfZ3OAS2DbTborWtb5yN6Nzo6j16U_rCNQXMVo_ENGu9UCH8iGjTZG_Rg1carOlxmZ5XaBXP1M_vZ8nGyGD8PZq9P0_H9bKAJY3FgQJOqpEKsaA75al1pRkrFgHJFhQKBBS_XAJCDgXVRUFZpSFQJVc5VThjpZ3fH3Na7r86EKGsbtNntVGNcFyQXLAcqOE3k7T9y6zrfpOckZ4zQkgueoNER0t6F4E0lW29r5fcSgzxUL1P18lC9PFafHDdHhzXG_NIF4ByYIN8nmn-S</recordid><startdate>20061115</startdate><enddate>20061115</enddate><creator>Skoog, R.A.</creator><creator>Banwell, T.C.</creator><creator>Gannett, J.W.</creator><creator>Habiby, S.F.</creator><creator>Pang, M.</creator><creator>Rauch, M.E.</creator><creator>Toliver, P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20061115</creationdate><title>Automatic Identification of Impairments Using Support Vector Machine Pattern Classification on Eye Diagrams</title><author>Skoog, R.A. ; Banwell, T.C. ; Gannett, J.W. ; Habiby, S.F. ; Pang, M. ; Rauch, M.E. ; Toliver, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-e0c3f7599b5202bdfc637a6058a59a091987d00020e0d4456fc0bdf70f28a2363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Channels</topic><topic>Classification</topic><topic>Degradation</topic><topic>Diagnostic systems</topic><topic>Impairment</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>Monitors</topic><topic>Optical character recognition software</topic><topic>Optical computing</topic><topic>optical performance monitoring (OPM)</topic><topic>Pattern classification</topic><topic>pattern recognition</topic><topic>Photonics</topic><topic>Signal analysis</topic><topic>Signal processing</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Skoog, R.A.</creatorcontrib><creatorcontrib>Banwell, T.C.</creatorcontrib><creatorcontrib>Gannett, J.W.</creatorcontrib><creatorcontrib>Habiby, S.F.</creatorcontrib><creatorcontrib>Pang, M.</creatorcontrib><creatorcontrib>Rauch, M.E.</creatorcontrib><creatorcontrib>Toliver, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE photonics technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Skoog, R.A.</au><au>Banwell, T.C.</au><au>Gannett, J.W.</au><au>Habiby, S.F.</au><au>Pang, M.</au><au>Rauch, M.E.</au><au>Toliver, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Identification of Impairments Using Support Vector Machine Pattern Classification on Eye Diagrams</atitle><jtitle>IEEE photonics technology letters</jtitle><stitle>LPT</stitle><date>2006-11-15</date><risdate>2006</risdate><volume>18</volume><issue>22</issue><spage>2398</spage><epage>2400</epage><pages>2398-2400</pages><issn>1041-1135</issn><eissn>1941-0174</eissn><coden>IPTLEL</coden><abstract>We have demonstrated powerful new techniques for identifying the optical impairments causing the degradation of an optical channel. We use machine learning and pattern classification techniques on eye diagrams to identify the optical impairments. These capabilities can enable the development of low-cost optical performance monitors having significant diagnostic capabilities</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LPT.2006.886146</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-1135 |
ispartof | IEEE photonics technology letters, 2006-11, Vol.18 (22), p.2398-2400 |
issn | 1041-1135 1941-0174 |
language | eng |
recordid | cdi_proquest_miscellaneous_896205985 |
source | IEEE/IET Electronic Library |
subjects | Channels Classification Degradation Diagnostic systems Impairment Machine learning Monitoring Monitors Optical character recognition software Optical computing optical performance monitoring (OPM) Pattern classification pattern recognition Photonics Signal analysis Signal processing Support vector machine classification Support vector machines |
title | Automatic Identification of Impairments Using Support Vector Machine Pattern Classification on Eye Diagrams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A35%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Identification%20of%20Impairments%20Using%20Support%20Vector%20Machine%20Pattern%20Classification%20on%20Eye%20Diagrams&rft.jtitle=IEEE%20photonics%20technology%20letters&rft.au=Skoog,%20R.A.&rft.date=2006-11-15&rft.volume=18&rft.issue=22&rft.spage=2398&rft.epage=2400&rft.pages=2398-2400&rft.issn=1041-1135&rft.eissn=1941-0174&rft.coden=IPTLEL&rft_id=info:doi/10.1109/LPT.2006.886146&rft_dat=%3Cproquest_RIE%3E2346222911%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=866357898&rft_id=info:pmid/&rft_ieee_id=4012069&rfr_iscdi=true |