Automatic Identification of Impairments Using Support Vector Machine Pattern Classification on Eye Diagrams

We have demonstrated powerful new techniques for identifying the optical impairments causing the degradation of an optical channel. We use machine learning and pattern classification techniques on eye diagrams to identify the optical impairments. These capabilities can enable the development of low-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics technology letters 2006-11, Vol.18 (22), p.2398-2400
Hauptverfasser: Skoog, R.A., Banwell, T.C., Gannett, J.W., Habiby, S.F., Pang, M., Rauch, M.E., Toliver, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2400
container_issue 22
container_start_page 2398
container_title IEEE photonics technology letters
container_volume 18
creator Skoog, R.A.
Banwell, T.C.
Gannett, J.W.
Habiby, S.F.
Pang, M.
Rauch, M.E.
Toliver, P.
description We have demonstrated powerful new techniques for identifying the optical impairments causing the degradation of an optical channel. We use machine learning and pattern classification techniques on eye diagrams to identify the optical impairments. These capabilities can enable the development of low-cost optical performance monitors having significant diagnostic capabilities
doi_str_mv 10.1109/LPT.2006.886146
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_896205985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4012069</ieee_id><sourcerecordid>2346222911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-e0c3f7599b5202bdfc637a6058a59a091987d00020e0d4456fc0bdf70f28a2363</originalsourceid><addsrcrecordid>eNpdkEFPAjEQhTdGExE9e_DSePEETLfbbns0iEqCkUTw2pTSxSK7XdvugX9vCcYYT_Nm8r2XycuyawxDjEGMZvPFMAdgQ84ZLthJ1sOiwAPAZXGaNCSNMaHn2UUIWwBcUFL0ss_7LrpaRavRdG2aaCur0-Ya5Co0rVtlfZ3OAS2DbTborWtb5yN6Nzo6j16U_rCNQXMVo_ENGu9UCH8iGjTZG_Rg1carOlxmZ5XaBXP1M_vZ8nGyGD8PZq9P0_H9bKAJY3FgQJOqpEKsaA75al1pRkrFgHJFhQKBBS_XAJCDgXVRUFZpSFQJVc5VThjpZ3fH3Na7r86EKGsbtNntVGNcFyQXLAcqOE3k7T9y6zrfpOckZ4zQkgueoNER0t6F4E0lW29r5fcSgzxUL1P18lC9PFafHDdHhzXG_NIF4ByYIN8nmn-S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866357898</pqid></control><display><type>article</type><title>Automatic Identification of Impairments Using Support Vector Machine Pattern Classification on Eye Diagrams</title><source>IEEE/IET Electronic Library</source><creator>Skoog, R.A. ; Banwell, T.C. ; Gannett, J.W. ; Habiby, S.F. ; Pang, M. ; Rauch, M.E. ; Toliver, P.</creator><creatorcontrib>Skoog, R.A. ; Banwell, T.C. ; Gannett, J.W. ; Habiby, S.F. ; Pang, M. ; Rauch, M.E. ; Toliver, P.</creatorcontrib><description>We have demonstrated powerful new techniques for identifying the optical impairments causing the degradation of an optical channel. We use machine learning and pattern classification techniques on eye diagrams to identify the optical impairments. These capabilities can enable the development of low-cost optical performance monitors having significant diagnostic capabilities</description><identifier>ISSN: 1041-1135</identifier><identifier>EISSN: 1941-0174</identifier><identifier>DOI: 10.1109/LPT.2006.886146</identifier><identifier>CODEN: IPTLEL</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Channels ; Classification ; Degradation ; Diagnostic systems ; Impairment ; Machine learning ; Monitoring ; Monitors ; Optical character recognition software ; Optical computing ; optical performance monitoring (OPM) ; Pattern classification ; pattern recognition ; Photonics ; Signal analysis ; Signal processing ; Support vector machine classification ; Support vector machines</subject><ispartof>IEEE photonics technology letters, 2006-11, Vol.18 (22), p.2398-2400</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-e0c3f7599b5202bdfc637a6058a59a091987d00020e0d4456fc0bdf70f28a2363</citedby><cites>FETCH-LOGICAL-c366t-e0c3f7599b5202bdfc637a6058a59a091987d00020e0d4456fc0bdf70f28a2363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4012069$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4012069$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Skoog, R.A.</creatorcontrib><creatorcontrib>Banwell, T.C.</creatorcontrib><creatorcontrib>Gannett, J.W.</creatorcontrib><creatorcontrib>Habiby, S.F.</creatorcontrib><creatorcontrib>Pang, M.</creatorcontrib><creatorcontrib>Rauch, M.E.</creatorcontrib><creatorcontrib>Toliver, P.</creatorcontrib><title>Automatic Identification of Impairments Using Support Vector Machine Pattern Classification on Eye Diagrams</title><title>IEEE photonics technology letters</title><addtitle>LPT</addtitle><description>We have demonstrated powerful new techniques for identifying the optical impairments causing the degradation of an optical channel. We use machine learning and pattern classification techniques on eye diagrams to identify the optical impairments. These capabilities can enable the development of low-cost optical performance monitors having significant diagnostic capabilities</description><subject>Channels</subject><subject>Classification</subject><subject>Degradation</subject><subject>Diagnostic systems</subject><subject>Impairment</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>Monitors</subject><subject>Optical character recognition software</subject><subject>Optical computing</subject><subject>optical performance monitoring (OPM)</subject><subject>Pattern classification</subject><subject>pattern recognition</subject><subject>Photonics</subject><subject>Signal analysis</subject><subject>Signal processing</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><issn>1041-1135</issn><issn>1941-0174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFPAjEQhTdGExE9e_DSePEETLfbbns0iEqCkUTw2pTSxSK7XdvugX9vCcYYT_Nm8r2XycuyawxDjEGMZvPFMAdgQ84ZLthJ1sOiwAPAZXGaNCSNMaHn2UUIWwBcUFL0ss_7LrpaRavRdG2aaCur0-Ya5Co0rVtlfZ3OAS2DbTborWtb5yN6Nzo6j16U_rCNQXMVo_ENGu9UCH8iGjTZG_Rg1carOlxmZ5XaBXP1M_vZ8nGyGD8PZq9P0_H9bKAJY3FgQJOqpEKsaA75al1pRkrFgHJFhQKBBS_XAJCDgXVRUFZpSFQJVc5VThjpZ3fH3Na7r86EKGsbtNntVGNcFyQXLAcqOE3k7T9y6zrfpOckZ4zQkgueoNER0t6F4E0lW29r5fcSgzxUL1P18lC9PFafHDdHhzXG_NIF4ByYIN8nmn-S</recordid><startdate>20061115</startdate><enddate>20061115</enddate><creator>Skoog, R.A.</creator><creator>Banwell, T.C.</creator><creator>Gannett, J.W.</creator><creator>Habiby, S.F.</creator><creator>Pang, M.</creator><creator>Rauch, M.E.</creator><creator>Toliver, P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20061115</creationdate><title>Automatic Identification of Impairments Using Support Vector Machine Pattern Classification on Eye Diagrams</title><author>Skoog, R.A. ; Banwell, T.C. ; Gannett, J.W. ; Habiby, S.F. ; Pang, M. ; Rauch, M.E. ; Toliver, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-e0c3f7599b5202bdfc637a6058a59a091987d00020e0d4456fc0bdf70f28a2363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Channels</topic><topic>Classification</topic><topic>Degradation</topic><topic>Diagnostic systems</topic><topic>Impairment</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>Monitors</topic><topic>Optical character recognition software</topic><topic>Optical computing</topic><topic>optical performance monitoring (OPM)</topic><topic>Pattern classification</topic><topic>pattern recognition</topic><topic>Photonics</topic><topic>Signal analysis</topic><topic>Signal processing</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Skoog, R.A.</creatorcontrib><creatorcontrib>Banwell, T.C.</creatorcontrib><creatorcontrib>Gannett, J.W.</creatorcontrib><creatorcontrib>Habiby, S.F.</creatorcontrib><creatorcontrib>Pang, M.</creatorcontrib><creatorcontrib>Rauch, M.E.</creatorcontrib><creatorcontrib>Toliver, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE photonics technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Skoog, R.A.</au><au>Banwell, T.C.</au><au>Gannett, J.W.</au><au>Habiby, S.F.</au><au>Pang, M.</au><au>Rauch, M.E.</au><au>Toliver, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Identification of Impairments Using Support Vector Machine Pattern Classification on Eye Diagrams</atitle><jtitle>IEEE photonics technology letters</jtitle><stitle>LPT</stitle><date>2006-11-15</date><risdate>2006</risdate><volume>18</volume><issue>22</issue><spage>2398</spage><epage>2400</epage><pages>2398-2400</pages><issn>1041-1135</issn><eissn>1941-0174</eissn><coden>IPTLEL</coden><abstract>We have demonstrated powerful new techniques for identifying the optical impairments causing the degradation of an optical channel. We use machine learning and pattern classification techniques on eye diagrams to identify the optical impairments. These capabilities can enable the development of low-cost optical performance monitors having significant diagnostic capabilities</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LPT.2006.886146</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-1135
ispartof IEEE photonics technology letters, 2006-11, Vol.18 (22), p.2398-2400
issn 1041-1135
1941-0174
language eng
recordid cdi_proquest_miscellaneous_896205985
source IEEE/IET Electronic Library
subjects Channels
Classification
Degradation
Diagnostic systems
Impairment
Machine learning
Monitoring
Monitors
Optical character recognition software
Optical computing
optical performance monitoring (OPM)
Pattern classification
pattern recognition
Photonics
Signal analysis
Signal processing
Support vector machine classification
Support vector machines
title Automatic Identification of Impairments Using Support Vector Machine Pattern Classification on Eye Diagrams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A35%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Identification%20of%20Impairments%20Using%20Support%20Vector%20Machine%20Pattern%20Classification%20on%20Eye%20Diagrams&rft.jtitle=IEEE%20photonics%20technology%20letters&rft.au=Skoog,%20R.A.&rft.date=2006-11-15&rft.volume=18&rft.issue=22&rft.spage=2398&rft.epage=2400&rft.pages=2398-2400&rft.issn=1041-1135&rft.eissn=1941-0174&rft.coden=IPTLEL&rft_id=info:doi/10.1109/LPT.2006.886146&rft_dat=%3Cproquest_RIE%3E2346222911%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=866357898&rft_id=info:pmid/&rft_ieee_id=4012069&rfr_iscdi=true