BioWar: scalable agent-based model of bioattacks

While structured by social and institutional networks, disease outbreaks are modulated by physical, economical, technological, communication, health, and governmental infrastructures. To systematically reason about the nature of outbreaks, the potential outcomes of media, prophylaxis, and vaccinatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 2006-03, Vol.36 (2), p.252-265
Hauptverfasser: Carley, K.M., Fridsma, D.B., Casman, E., Yahja, A., Altman, N., Li-Chiou Chen, Kaminsky, B., Nave, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While structured by social and institutional networks, disease outbreaks are modulated by physical, economical, technological, communication, health, and governmental infrastructures. To systematically reason about the nature of outbreaks, the potential outcomes of media, prophylaxis, and vaccination campaigns, and the relative value of various early warning devices, social context, and infrastructure, must be considered. Numerical models provide a cost-effective ethical system for reasoning about such events. BioWar, a scalable citywide multiagent network numerical model, is described in this paper. BioWar simulates individuals as agents who are embedded in social, health, and professional networks and tracks the incidence of background and maliciously introduced diseases. In addition to epidemiology, BioWar simulates health-care-seeking behaviors, absenteeism patterns, and pharmaceutical purchases, information useful for syndromic and behavioral surveillance algorithms.
ISSN:1083-4427
2168-2216
1558-2426
2168-2232
DOI:10.1109/TSMCA.2005.851291