Functions with noise-induced multimodality: a test for evolutionary robust Optimization-properties and performance analysis
This paper proposes and analyzes a class of test functions for evolutionary robust optimization, the "functions with noise-induced multimodality" (FNIMs). After a motivational introduction gleaned from a real-world optimization problem, the robust optimizer properties of this test class ar...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on evolutionary computation 2006-10, Vol.10 (5), p.507-526 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes and analyzes a class of test functions for evolutionary robust optimization, the "functions with noise-induced multimodality" (FNIMs). After a motivational introduction gleaned from a real-world optimization problem, the robust optimizer properties of this test class are investigated with respect to different robustness measures. The steady-state behavior of evolution strategies on FNIMs will be investigated empirically. Being based on the empirical results, a subclass of FNIMs is identified which is amenable to an asymptotical performance analysis. The results of this analysis will be used to derive recommendations for the choice of strategy-specific parameters such as population size and truncation ratio |
---|---|
ISSN: | 1089-778X 1941-0026 |
DOI: | 10.1109/TEVC.2005.861416 |