Texas Two-Step: A Framework for Optimal Multi-Input Single-Output Deconvolution

Multi-input single-output deconvolution (MISO-D) aims to extract a deblurred estimate of a target signal from several blurred and noisy observations. This paper develops a new two step framework-Texas two-step-to solve MISO-D problems with known blurs. Texas two-step first reduces the MISO-D problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2007-11, Vol.16 (11), p.2752-2765
Hauptverfasser: Neelamani, R.N., Deffenbaugh, M., Baraniuk, R.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2765
container_issue 11
container_start_page 2752
container_title IEEE transactions on image processing
container_volume 16
creator Neelamani, R.N.
Deffenbaugh, M.
Baraniuk, R.G.
description Multi-input single-output deconvolution (MISO-D) aims to extract a deblurred estimate of a target signal from several blurred and noisy observations. This paper develops a new two step framework-Texas two-step-to solve MISO-D problems with known blurs. Texas two-step first reduces the MISO-D problem to a related single-input single-output deconvolution (SISO-D) problem by invoking the concept of sufficient statistics (SSs) and then solves the simpler SISO-D problem using an appropriate technique. The two-step framework enables new MISO-D techniques (both optimal and suboptimal) based on the rich suite of existing SISO-D techniques. In fact, the properties of SSs imply that a MISO-D algorithm is mean-squared-error optimal if and only if it can be rearranged to conform to the Texas two-step framework. Using this insight, we construct new wavelet- and curvelet-based MISO-D algorithms with asymptotically optimal performance. Simulated and real data experiments verify that the framework is indeed effective.
doi_str_mv 10.1109/TIP.2007.906251
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_896194238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4337767</ieee_id><sourcerecordid>896194238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-9f10e30536dbdca7d87738cf5e6b11cb89f8415c3ff5385c181de003b95c45153</originalsourceid><addsrcrecordid>eNp90c9rFDEUB_Agiv2hZw-CDIL2NNu8STJJvJVq60Jlha7nkMm8yNTZyTSZsfW_N-suFnpoLknIJw_e-xLyBugCgOrT9fL7oqJULjStKwHPyCFoDiWlvHqez1TIUgLXB-QopRtKgQuoX5IDkFpTKapDslrjvU3F-i6U1xOOn4qz4iLaDd6F-KvwIRarceo2ti--zf3UlcthnKfiuht-9liu5ml7-4wuDL9DP09dGF6RF972CV_v92Py4-LL-vxrebW6XJ6fXZWOUz6V2gNFRgWr26Z1VrZKSqacF1g3AK5R2isOwjHvBVPCgYIWKWWNFi73INgxOdnVHWO4nTFNZtMlh31vBwxzMkrXeRIVU1l-fFLWimvONWT4_hG8CXMcchdG1VznBSyj0x1yMaQU0Zsx5vnEPwao2UZiciRmG4nZRZJ_vNuXnZsNtg9-n0EGH_bAJmd7H-3guvTg9Fb-a_ntznWI-P-ZMyZlLdlfJdOaow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864999913</pqid></control><display><type>article</type><title>Texas Two-Step: A Framework for Optimal Multi-Input Single-Output Deconvolution</title><source>IEEE Electronic Library (IEL)</source><creator>Neelamani, R.N. ; Deffenbaugh, M. ; Baraniuk, R.G.</creator><creatorcontrib>Neelamani, R.N. ; Deffenbaugh, M. ; Baraniuk, R.G.</creatorcontrib><description>Multi-input single-output deconvolution (MISO-D) aims to extract a deblurred estimate of a target signal from several blurred and noisy observations. This paper develops a new two step framework-Texas two-step-to solve MISO-D problems with known blurs. Texas two-step first reduces the MISO-D problem to a related single-input single-output deconvolution (SISO-D) problem by invoking the concept of sufficient statistics (SSs) and then solves the simpler SISO-D problem using an appropriate technique. The two-step framework enables new MISO-D techniques (both optimal and suboptimal) based on the rich suite of existing SISO-D techniques. In fact, the properties of SSs imply that a MISO-D algorithm is mean-squared-error optimal if and only if it can be rearranged to conform to the Texas two-step framework. Using this insight, we construct new wavelet- and curvelet-based MISO-D algorithms with asymptotically optimal performance. Simulated and real data experiments verify that the framework is indeed effective.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2007.906251</identifier><identifier>PMID: 17990752</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Astronomy ; Asymptotic properties ; Biomedical imaging ; Blurred ; Computer simulation ; Curvelets ; deblurring ; Deconvolution ; Digital filters ; Estimates ; Exact sciences and technology ; Frequency estimation ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image restoration ; Information, signal and communications theory ; minimax optimal ; Minimax techniques ; Miscellaneous ; multichannel ; Nonlinear filters ; Optimization ; Regression Analysis ; Reproducibility of Results ; restoration ; Sensitivity and Specificity ; Signal processing ; Statistics ; sufficient statistics ; Telecommunications and information theory ; Telescopes ; wavelet-vaguelette ; wavelets</subject><ispartof>IEEE transactions on image processing, 2007-11, Vol.16 (11), p.2752-2765</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-9f10e30536dbdca7d87738cf5e6b11cb89f8415c3ff5385c181de003b95c45153</citedby><cites>FETCH-LOGICAL-c404t-9f10e30536dbdca7d87738cf5e6b11cb89f8415c3ff5385c181de003b95c45153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4337767$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4337767$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19179915$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17990752$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Neelamani, R.N.</creatorcontrib><creatorcontrib>Deffenbaugh, M.</creatorcontrib><creatorcontrib>Baraniuk, R.G.</creatorcontrib><title>Texas Two-Step: A Framework for Optimal Multi-Input Single-Output Deconvolution</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Multi-input single-output deconvolution (MISO-D) aims to extract a deblurred estimate of a target signal from several blurred and noisy observations. This paper develops a new two step framework-Texas two-step-to solve MISO-D problems with known blurs. Texas two-step first reduces the MISO-D problem to a related single-input single-output deconvolution (SISO-D) problem by invoking the concept of sufficient statistics (SSs) and then solves the simpler SISO-D problem using an appropriate technique. The two-step framework enables new MISO-D techniques (both optimal and suboptimal) based on the rich suite of existing SISO-D techniques. In fact, the properties of SSs imply that a MISO-D algorithm is mean-squared-error optimal if and only if it can be rearranged to conform to the Texas two-step framework. Using this insight, we construct new wavelet- and curvelet-based MISO-D algorithms with asymptotically optimal performance. Simulated and real data experiments verify that the framework is indeed effective.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Astronomy</subject><subject>Asymptotic properties</subject><subject>Biomedical imaging</subject><subject>Blurred</subject><subject>Computer simulation</subject><subject>Curvelets</subject><subject>deblurring</subject><subject>Deconvolution</subject><subject>Digital filters</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Frequency estimation</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image restoration</subject><subject>Information, signal and communications theory</subject><subject>minimax optimal</subject><subject>Minimax techniques</subject><subject>Miscellaneous</subject><subject>multichannel</subject><subject>Nonlinear filters</subject><subject>Optimization</subject><subject>Regression Analysis</subject><subject>Reproducibility of Results</subject><subject>restoration</subject><subject>Sensitivity and Specificity</subject><subject>Signal processing</subject><subject>Statistics</subject><subject>sufficient statistics</subject><subject>Telecommunications and information theory</subject><subject>Telescopes</subject><subject>wavelet-vaguelette</subject><subject>wavelets</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNp90c9rFDEUB_Agiv2hZw-CDIL2NNu8STJJvJVq60Jlha7nkMm8yNTZyTSZsfW_N-suFnpoLknIJw_e-xLyBugCgOrT9fL7oqJULjStKwHPyCFoDiWlvHqez1TIUgLXB-QopRtKgQuoX5IDkFpTKapDslrjvU3F-i6U1xOOn4qz4iLaDd6F-KvwIRarceo2ti--zf3UlcthnKfiuht-9liu5ml7-4wuDL9DP09dGF6RF972CV_v92Py4-LL-vxrebW6XJ6fXZWOUz6V2gNFRgWr26Z1VrZKSqacF1g3AK5R2isOwjHvBVPCgYIWKWWNFi73INgxOdnVHWO4nTFNZtMlh31vBwxzMkrXeRIVU1l-fFLWimvONWT4_hG8CXMcchdG1VznBSyj0x1yMaQU0Zsx5vnEPwao2UZiciRmG4nZRZJ_vNuXnZsNtg9-n0EGH_bAJmd7H-3guvTg9Fb-a_ntznWI-P-ZMyZlLdlfJdOaow</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Neelamani, R.N.</creator><creator>Deffenbaugh, M.</creator><creator>Baraniuk, R.G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20071101</creationdate><title>Texas Two-Step: A Framework for Optimal Multi-Input Single-Output Deconvolution</title><author>Neelamani, R.N. ; Deffenbaugh, M. ; Baraniuk, R.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-9f10e30536dbdca7d87738cf5e6b11cb89f8415c3ff5385c181de003b95c45153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Astronomy</topic><topic>Asymptotic properties</topic><topic>Biomedical imaging</topic><topic>Blurred</topic><topic>Computer simulation</topic><topic>Curvelets</topic><topic>deblurring</topic><topic>Deconvolution</topic><topic>Digital filters</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Frequency estimation</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image restoration</topic><topic>Information, signal and communications theory</topic><topic>minimax optimal</topic><topic>Minimax techniques</topic><topic>Miscellaneous</topic><topic>multichannel</topic><topic>Nonlinear filters</topic><topic>Optimization</topic><topic>Regression Analysis</topic><topic>Reproducibility of Results</topic><topic>restoration</topic><topic>Sensitivity and Specificity</topic><topic>Signal processing</topic><topic>Statistics</topic><topic>sufficient statistics</topic><topic>Telecommunications and information theory</topic><topic>Telescopes</topic><topic>wavelet-vaguelette</topic><topic>wavelets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neelamani, R.N.</creatorcontrib><creatorcontrib>Deffenbaugh, M.</creatorcontrib><creatorcontrib>Baraniuk, R.G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Neelamani, R.N.</au><au>Deffenbaugh, M.</au><au>Baraniuk, R.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Texas Two-Step: A Framework for Optimal Multi-Input Single-Output Deconvolution</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2007-11-01</date><risdate>2007</risdate><volume>16</volume><issue>11</issue><spage>2752</spage><epage>2765</epage><pages>2752-2765</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Multi-input single-output deconvolution (MISO-D) aims to extract a deblurred estimate of a target signal from several blurred and noisy observations. This paper develops a new two step framework-Texas two-step-to solve MISO-D problems with known blurs. Texas two-step first reduces the MISO-D problem to a related single-input single-output deconvolution (SISO-D) problem by invoking the concept of sufficient statistics (SSs) and then solves the simpler SISO-D problem using an appropriate technique. The two-step framework enables new MISO-D techniques (both optimal and suboptimal) based on the rich suite of existing SISO-D techniques. In fact, the properties of SSs imply that a MISO-D algorithm is mean-squared-error optimal if and only if it can be rearranged to conform to the Texas two-step framework. Using this insight, we construct new wavelet- and curvelet-based MISO-D algorithms with asymptotically optimal performance. Simulated and real data experiments verify that the framework is indeed effective.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>17990752</pmid><doi>10.1109/TIP.2007.906251</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2007-11, Vol.16 (11), p.2752-2765
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_896194238
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Artificial Intelligence
Astronomy
Asymptotic properties
Biomedical imaging
Blurred
Computer simulation
Curvelets
deblurring
Deconvolution
Digital filters
Estimates
Exact sciences and technology
Frequency estimation
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Image restoration
Information, signal and communications theory
minimax optimal
Minimax techniques
Miscellaneous
multichannel
Nonlinear filters
Optimization
Regression Analysis
Reproducibility of Results
restoration
Sensitivity and Specificity
Signal processing
Statistics
sufficient statistics
Telecommunications and information theory
Telescopes
wavelet-vaguelette
wavelets
title Texas Two-Step: A Framework for Optimal Multi-Input Single-Output Deconvolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A20%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Texas%20Two-Step:%20A%20Framework%20for%20Optimal%20Multi-Input%20Single-Output%20Deconvolution&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Neelamani,%20R.N.&rft.date=2007-11-01&rft.volume=16&rft.issue=11&rft.spage=2752&rft.epage=2765&rft.pages=2752-2765&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2007.906251&rft_dat=%3Cproquest_RIE%3E896194238%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864999913&rft_id=info:pmid/17990752&rft_ieee_id=4337767&rfr_iscdi=true