Texas Two-Step: A Framework for Optimal Multi-Input Single-Output Deconvolution
Multi-input single-output deconvolution (MISO-D) aims to extract a deblurred estimate of a target signal from several blurred and noisy observations. This paper develops a new two step framework-Texas two-step-to solve MISO-D problems with known blurs. Texas two-step first reduces the MISO-D problem...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2007-11, Vol.16 (11), p.2752-2765 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multi-input single-output deconvolution (MISO-D) aims to extract a deblurred estimate of a target signal from several blurred and noisy observations. This paper develops a new two step framework-Texas two-step-to solve MISO-D problems with known blurs. Texas two-step first reduces the MISO-D problem to a related single-input single-output deconvolution (SISO-D) problem by invoking the concept of sufficient statistics (SSs) and then solves the simpler SISO-D problem using an appropriate technique. The two-step framework enables new MISO-D techniques (both optimal and suboptimal) based on the rich suite of existing SISO-D techniques. In fact, the properties of SSs imply that a MISO-D algorithm is mean-squared-error optimal if and only if it can be rearranged to conform to the Texas two-step framework. Using this insight, we construct new wavelet- and curvelet-based MISO-D algorithms with asymptotically optimal performance. Simulated and real data experiments verify that the framework is indeed effective. |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2007.906251 |