Texas Two-Step: A Framework for Optimal Multi-Input Single-Output Deconvolution

Multi-input single-output deconvolution (MISO-D) aims to extract a deblurred estimate of a target signal from several blurred and noisy observations. This paper develops a new two step framework-Texas two-step-to solve MISO-D problems with known blurs. Texas two-step first reduces the MISO-D problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2007-11, Vol.16 (11), p.2752-2765
Hauptverfasser: Neelamani, R.N., Deffenbaugh, M., Baraniuk, R.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multi-input single-output deconvolution (MISO-D) aims to extract a deblurred estimate of a target signal from several blurred and noisy observations. This paper develops a new two step framework-Texas two-step-to solve MISO-D problems with known blurs. Texas two-step first reduces the MISO-D problem to a related single-input single-output deconvolution (SISO-D) problem by invoking the concept of sufficient statistics (SSs) and then solves the simpler SISO-D problem using an appropriate technique. The two-step framework enables new MISO-D techniques (both optimal and suboptimal) based on the rich suite of existing SISO-D techniques. In fact, the properties of SSs imply that a MISO-D algorithm is mean-squared-error optimal if and only if it can be rearranged to conform to the Texas two-step framework. Using this insight, we construct new wavelet- and curvelet-based MISO-D algorithms with asymptotically optimal performance. Simulated and real data experiments verify that the framework is indeed effective.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2007.906251