Classification of osteoarthritic and normal knee function using three-dimensional motion analysis and the Dempster-Shafer theory of evidence

In this paper, a novel object classification method is introduced and developed within a biomechanical study of human knee function in which subjects are classified to one of two groups: subjects with osteoarthritic (OA) and normal (NL) knee function. Knee-function characteristics are collected usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 2006-01, Vol.36 (1), p.173-186
Hauptverfasser: Beynon, M.J., Jones, L., Holt, C.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a novel object classification method is introduced and developed within a biomechanical study of human knee function in which subjects are classified to one of two groups: subjects with osteoarthritic (OA) and normal (NL) knee function. Knee-function characteristics are collected using a three-dimensional motion-analysis technique. The classification method transforms these characteristics into sets of three belief values: a level of belief that a subject has OA knee function, a level of belief that a subject has NL knee function, and an associated level of uncertainty. The evidence from each characteristic is then combined into a final set of belief values, which is used to classify subjects. The final belief values are subsequently represented on a simplex plot, which enables the classification of a subject to be represented visually. The control parameters, which are intrinsic to the classification method, can be chosen by an expert or by an optimization approach. Using a leave-one-out cross-validation approach, the classification accuracy of the proposed method is shown to compare favorably with that of a well-established classifier-linear discriminant analysis. Overall, this study introduces a visual tool that can be used to support orthopaedic surgeons when making clinical decisions.
ISSN:1083-4427
2168-2216
1558-2426
2168-2232
DOI:10.1109/TSMCA.2006.859098