High-Throughput Nanogap Formation Using Single Ramp Feedback Control

We demonstrate a technique for simultaneously fabricating arrays of electromigrated nanogaps using a single-ramp feedback-controlled voltage clamp. The parallel formation is achieved by controlling the applied bias with a voltage clamp directly adjacent to a nanogap array containing low-impedance sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nanotechnology 2011-07, Vol.10 (4), p.806-809
Hauptverfasser: Johnson, S. L., Hunley, D. P., Sundararajan, A., Johnson, A. T. C., Strachan, D. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 809
container_issue 4
container_start_page 806
container_title IEEE transactions on nanotechnology
container_volume 10
creator Johnson, S. L.
Hunley, D. P.
Sundararajan, A.
Johnson, A. T. C.
Strachan, D. R.
description We demonstrate a technique for simultaneously fabricating arrays of electromigrated nanogaps using a single-ramp feedback-controlled voltage clamp. The parallel formation is achieved by controlling the applied bias with a voltage clamp directly adjacent to a nanogap array containing low-impedance shunts. Self-balancing of the electromigration permits the two voltage leads to fix the applied voltage across all the forming nanogaps simultaneously. This single-ramp feedback-controlled voltage clamp method is at least a 100 times faster than previous work utilizing computer feedback control of parallel nanojunctions and also circumvents the deleterious thermal runaway that occurs in the conventional single-ramp technique.
doi_str_mv 10.1109/TNANO.2010.2080283
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_896188270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5582297</ieee_id><sourcerecordid>896188270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-63e6f6723be04bd522b5ef5016aada0d609a61147b10dd13063c1283850a716e3</originalsourceid><addsrcrecordid>eNpdkE1PwkAQhhujiYj-Ab00JsZTcWa3u90eCYqYEEgUEm-bbbuFYunibnvw37sI4eBlPjLPvJl5g-AWYYAI6dNiNpzNBwR8T0AAEfQs6GEaYwQg2LmvGeUREvZ5GVw5twHAhDPRC54n1WodLdbWdKv1rmvDmWrMSu3CsbFb1VamCZeualbhhw-1Dt_V1s-0LjKVf4Uj07TW1NfBRalqp2-OuR8sxy-L0SSazl_fRsNplMeEtBGnmpc8ITTTEGcFIyRjumSAXKlCQcEhVRwxTjKEokAKnOboXxEMVIJc037weNDdWfPdadfKbeVyXdeq0aZzUqQchSAJePL-H7kxnW38cTJFxjknsIfIAcqtcc7qUu5stVX2RyLIva3yz1a5t1UebfVLD0dl5XJVl1Y1eeVOmySmnLE48dzdgau01qcxY4KQNKG_Och-ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>915666200</pqid></control><display><type>article</type><title>High-Throughput Nanogap Formation Using Single Ramp Feedback Control</title><source>IEEE Electronic Library (IEL)</source><creator>Johnson, S. L. ; Hunley, D. P. ; Sundararajan, A. ; Johnson, A. T. C. ; Strachan, D. R.</creator><creatorcontrib>Johnson, S. L. ; Hunley, D. P. ; Sundararajan, A. ; Johnson, A. T. C. ; Strachan, D. R.</creatorcontrib><description>We demonstrate a technique for simultaneously fabricating arrays of electromigrated nanogaps using a single-ramp feedback-controlled voltage clamp. The parallel formation is achieved by controlling the applied bias with a voltage clamp directly adjacent to a nanogap array containing low-impedance shunts. Self-balancing of the electromigration permits the two voltage leads to fix the applied voltage across all the forming nanogaps simultaneously. This single-ramp feedback-controlled voltage clamp method is at least a 100 times faster than previous work utilizing computer feedback control of parallel nanojunctions and also circumvents the deleterious thermal runaway that occurs in the conventional single-ramp technique.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2010.2080283</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Arrays ; Clamps ; Electric potential ; Electromigration ; Electronics ; Exact sciences and technology ; Feedback control ; Junctions ; Lead ; molecular electronics ; Molecular electronics, nanoelectronics ; Nanocomposites ; nanoelectronics ; nanogap electrodes ; Nanomaterials ; Nanostructure ; parallel nanogaps ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Voltage ; Voltage control</subject><ispartof>IEEE transactions on nanotechnology, 2011-07, Vol.10 (4), p.806-809</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-63e6f6723be04bd522b5ef5016aada0d609a61147b10dd13063c1283850a716e3</citedby><cites>FETCH-LOGICAL-c422t-63e6f6723be04bd522b5ef5016aada0d609a61147b10dd13063c1283850a716e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5582297$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5582297$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24365547$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, S. L.</creatorcontrib><creatorcontrib>Hunley, D. P.</creatorcontrib><creatorcontrib>Sundararajan, A.</creatorcontrib><creatorcontrib>Johnson, A. T. C.</creatorcontrib><creatorcontrib>Strachan, D. R.</creatorcontrib><title>High-Throughput Nanogap Formation Using Single Ramp Feedback Control</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>We demonstrate a technique for simultaneously fabricating arrays of electromigrated nanogaps using a single-ramp feedback-controlled voltage clamp. The parallel formation is achieved by controlling the applied bias with a voltage clamp directly adjacent to a nanogap array containing low-impedance shunts. Self-balancing of the electromigration permits the two voltage leads to fix the applied voltage across all the forming nanogaps simultaneously. This single-ramp feedback-controlled voltage clamp method is at least a 100 times faster than previous work utilizing computer feedback control of parallel nanojunctions and also circumvents the deleterious thermal runaway that occurs in the conventional single-ramp technique.</description><subject>Applied sciences</subject><subject>Arrays</subject><subject>Clamps</subject><subject>Electric potential</subject><subject>Electromigration</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Feedback control</subject><subject>Junctions</subject><subject>Lead</subject><subject>molecular electronics</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanocomposites</subject><subject>nanoelectronics</subject><subject>nanogap electrodes</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>parallel nanogaps</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Voltage</subject><subject>Voltage control</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1PwkAQhhujiYj-Ab00JsZTcWa3u90eCYqYEEgUEm-bbbuFYunibnvw37sI4eBlPjLPvJl5g-AWYYAI6dNiNpzNBwR8T0AAEfQs6GEaYwQg2LmvGeUREvZ5GVw5twHAhDPRC54n1WodLdbWdKv1rmvDmWrMSu3CsbFb1VamCZeualbhhw-1Dt_V1s-0LjKVf4Uj07TW1NfBRalqp2-OuR8sxy-L0SSazl_fRsNplMeEtBGnmpc8ITTTEGcFIyRjumSAXKlCQcEhVRwxTjKEokAKnOboXxEMVIJc037weNDdWfPdadfKbeVyXdeq0aZzUqQchSAJePL-H7kxnW38cTJFxjknsIfIAcqtcc7qUu5stVX2RyLIva3yz1a5t1UebfVLD0dl5XJVl1Y1eeVOmySmnLE48dzdgau01qcxY4KQNKG_Och-ow</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Johnson, S. L.</creator><creator>Hunley, D. P.</creator><creator>Sundararajan, A.</creator><creator>Johnson, A. T. C.</creator><creator>Strachan, D. R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110701</creationdate><title>High-Throughput Nanogap Formation Using Single Ramp Feedback Control</title><author>Johnson, S. L. ; Hunley, D. P. ; Sundararajan, A. ; Johnson, A. T. C. ; Strachan, D. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-63e6f6723be04bd522b5ef5016aada0d609a61147b10dd13063c1283850a716e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Arrays</topic><topic>Clamps</topic><topic>Electric potential</topic><topic>Electromigration</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Feedback control</topic><topic>Junctions</topic><topic>Lead</topic><topic>molecular electronics</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanocomposites</topic><topic>nanoelectronics</topic><topic>nanogap electrodes</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>parallel nanogaps</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Voltage</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, S. L.</creatorcontrib><creatorcontrib>Hunley, D. P.</creatorcontrib><creatorcontrib>Sundararajan, A.</creatorcontrib><creatorcontrib>Johnson, A. T. C.</creatorcontrib><creatorcontrib>Strachan, D. R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Johnson, S. L.</au><au>Hunley, D. P.</au><au>Sundararajan, A.</au><au>Johnson, A. T. C.</au><au>Strachan, D. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Throughput Nanogap Formation Using Single Ramp Feedback Control</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>10</volume><issue>4</issue><spage>806</spage><epage>809</epage><pages>806-809</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>We demonstrate a technique for simultaneously fabricating arrays of electromigrated nanogaps using a single-ramp feedback-controlled voltage clamp. The parallel formation is achieved by controlling the applied bias with a voltage clamp directly adjacent to a nanogap array containing low-impedance shunts. Self-balancing of the electromigration permits the two voltage leads to fix the applied voltage across all the forming nanogaps simultaneously. This single-ramp feedback-controlled voltage clamp method is at least a 100 times faster than previous work utilizing computer feedback control of parallel nanojunctions and also circumvents the deleterious thermal runaway that occurs in the conventional single-ramp technique.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TNANO.2010.2080283</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-125X
ispartof IEEE transactions on nanotechnology, 2011-07, Vol.10 (4), p.806-809
issn 1536-125X
1941-0085
language eng
recordid cdi_proquest_miscellaneous_896188270
source IEEE Electronic Library (IEL)
subjects Applied sciences
Arrays
Clamps
Electric potential
Electromigration
Electronics
Exact sciences and technology
Feedback control
Junctions
Lead
molecular electronics
Molecular electronics, nanoelectronics
Nanocomposites
nanoelectronics
nanogap electrodes
Nanomaterials
Nanostructure
parallel nanogaps
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Voltage
Voltage control
title High-Throughput Nanogap Formation Using Single Ramp Feedback Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Throughput%20Nanogap%20Formation%20Using%20Single%20Ramp%20Feedback%20Control&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Johnson,%20S.%20L.&rft.date=2011-07-01&rft.volume=10&rft.issue=4&rft.spage=806&rft.epage=809&rft.pages=806-809&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2010.2080283&rft_dat=%3Cproquest_RIE%3E896188270%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=915666200&rft_id=info:pmid/&rft_ieee_id=5582297&rfr_iscdi=true