High-Throughput Nanogap Formation Using Single Ramp Feedback Control
We demonstrate a technique for simultaneously fabricating arrays of electromigrated nanogaps using a single-ramp feedback-controlled voltage clamp. The parallel formation is achieved by controlling the applied bias with a voltage clamp directly adjacent to a nanogap array containing low-impedance sh...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nanotechnology 2011-07, Vol.10 (4), p.806-809 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 809 |
---|---|
container_issue | 4 |
container_start_page | 806 |
container_title | IEEE transactions on nanotechnology |
container_volume | 10 |
creator | Johnson, S. L. Hunley, D. P. Sundararajan, A. Johnson, A. T. C. Strachan, D. R. |
description | We demonstrate a technique for simultaneously fabricating arrays of electromigrated nanogaps using a single-ramp feedback-controlled voltage clamp. The parallel formation is achieved by controlling the applied bias with a voltage clamp directly adjacent to a nanogap array containing low-impedance shunts. Self-balancing of the electromigration permits the two voltage leads to fix the applied voltage across all the forming nanogaps simultaneously. This single-ramp feedback-controlled voltage clamp method is at least a 100 times faster than previous work utilizing computer feedback control of parallel nanojunctions and also circumvents the deleterious thermal runaway that occurs in the conventional single-ramp technique. |
doi_str_mv | 10.1109/TNANO.2010.2080283 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_896188270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5582297</ieee_id><sourcerecordid>896188270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-63e6f6723be04bd522b5ef5016aada0d609a61147b10dd13063c1283850a716e3</originalsourceid><addsrcrecordid>eNpdkE1PwkAQhhujiYj-Ab00JsZTcWa3u90eCYqYEEgUEm-bbbuFYunibnvw37sI4eBlPjLPvJl5g-AWYYAI6dNiNpzNBwR8T0AAEfQs6GEaYwQg2LmvGeUREvZ5GVw5twHAhDPRC54n1WodLdbWdKv1rmvDmWrMSu3CsbFb1VamCZeualbhhw-1Dt_V1s-0LjKVf4Uj07TW1NfBRalqp2-OuR8sxy-L0SSazl_fRsNplMeEtBGnmpc8ITTTEGcFIyRjumSAXKlCQcEhVRwxTjKEokAKnOboXxEMVIJc037weNDdWfPdadfKbeVyXdeq0aZzUqQchSAJePL-H7kxnW38cTJFxjknsIfIAcqtcc7qUu5stVX2RyLIva3yz1a5t1UebfVLD0dl5XJVl1Y1eeVOmySmnLE48dzdgau01qcxY4KQNKG_Och-ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>915666200</pqid></control><display><type>article</type><title>High-Throughput Nanogap Formation Using Single Ramp Feedback Control</title><source>IEEE Electronic Library (IEL)</source><creator>Johnson, S. L. ; Hunley, D. P. ; Sundararajan, A. ; Johnson, A. T. C. ; Strachan, D. R.</creator><creatorcontrib>Johnson, S. L. ; Hunley, D. P. ; Sundararajan, A. ; Johnson, A. T. C. ; Strachan, D. R.</creatorcontrib><description>We demonstrate a technique for simultaneously fabricating arrays of electromigrated nanogaps using a single-ramp feedback-controlled voltage clamp. The parallel formation is achieved by controlling the applied bias with a voltage clamp directly adjacent to a nanogap array containing low-impedance shunts. Self-balancing of the electromigration permits the two voltage leads to fix the applied voltage across all the forming nanogaps simultaneously. This single-ramp feedback-controlled voltage clamp method is at least a 100 times faster than previous work utilizing computer feedback control of parallel nanojunctions and also circumvents the deleterious thermal runaway that occurs in the conventional single-ramp technique.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2010.2080283</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Arrays ; Clamps ; Electric potential ; Electromigration ; Electronics ; Exact sciences and technology ; Feedback control ; Junctions ; Lead ; molecular electronics ; Molecular electronics, nanoelectronics ; Nanocomposites ; nanoelectronics ; nanogap electrodes ; Nanomaterials ; Nanostructure ; parallel nanogaps ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Voltage ; Voltage control</subject><ispartof>IEEE transactions on nanotechnology, 2011-07, Vol.10 (4), p.806-809</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-63e6f6723be04bd522b5ef5016aada0d609a61147b10dd13063c1283850a716e3</citedby><cites>FETCH-LOGICAL-c422t-63e6f6723be04bd522b5ef5016aada0d609a61147b10dd13063c1283850a716e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5582297$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5582297$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24365547$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, S. L.</creatorcontrib><creatorcontrib>Hunley, D. P.</creatorcontrib><creatorcontrib>Sundararajan, A.</creatorcontrib><creatorcontrib>Johnson, A. T. C.</creatorcontrib><creatorcontrib>Strachan, D. R.</creatorcontrib><title>High-Throughput Nanogap Formation Using Single Ramp Feedback Control</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>We demonstrate a technique for simultaneously fabricating arrays of electromigrated nanogaps using a single-ramp feedback-controlled voltage clamp. The parallel formation is achieved by controlling the applied bias with a voltage clamp directly adjacent to a nanogap array containing low-impedance shunts. Self-balancing of the electromigration permits the two voltage leads to fix the applied voltage across all the forming nanogaps simultaneously. This single-ramp feedback-controlled voltage clamp method is at least a 100 times faster than previous work utilizing computer feedback control of parallel nanojunctions and also circumvents the deleterious thermal runaway that occurs in the conventional single-ramp technique.</description><subject>Applied sciences</subject><subject>Arrays</subject><subject>Clamps</subject><subject>Electric potential</subject><subject>Electromigration</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Feedback control</subject><subject>Junctions</subject><subject>Lead</subject><subject>molecular electronics</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanocomposites</subject><subject>nanoelectronics</subject><subject>nanogap electrodes</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>parallel nanogaps</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Voltage</subject><subject>Voltage control</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1PwkAQhhujiYj-Ab00JsZTcWa3u90eCYqYEEgUEm-bbbuFYunibnvw37sI4eBlPjLPvJl5g-AWYYAI6dNiNpzNBwR8T0AAEfQs6GEaYwQg2LmvGeUREvZ5GVw5twHAhDPRC54n1WodLdbWdKv1rmvDmWrMSu3CsbFb1VamCZeualbhhw-1Dt_V1s-0LjKVf4Uj07TW1NfBRalqp2-OuR8sxy-L0SSazl_fRsNplMeEtBGnmpc8ITTTEGcFIyRjumSAXKlCQcEhVRwxTjKEokAKnOboXxEMVIJc037weNDdWfPdadfKbeVyXdeq0aZzUqQchSAJePL-H7kxnW38cTJFxjknsIfIAcqtcc7qUu5stVX2RyLIva3yz1a5t1UebfVLD0dl5XJVl1Y1eeVOmySmnLE48dzdgau01qcxY4KQNKG_Och-ow</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Johnson, S. L.</creator><creator>Hunley, D. P.</creator><creator>Sundararajan, A.</creator><creator>Johnson, A. T. C.</creator><creator>Strachan, D. R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110701</creationdate><title>High-Throughput Nanogap Formation Using Single Ramp Feedback Control</title><author>Johnson, S. L. ; Hunley, D. P. ; Sundararajan, A. ; Johnson, A. T. C. ; Strachan, D. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-63e6f6723be04bd522b5ef5016aada0d609a61147b10dd13063c1283850a716e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Arrays</topic><topic>Clamps</topic><topic>Electric potential</topic><topic>Electromigration</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Feedback control</topic><topic>Junctions</topic><topic>Lead</topic><topic>molecular electronics</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanocomposites</topic><topic>nanoelectronics</topic><topic>nanogap electrodes</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>parallel nanogaps</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Voltage</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, S. L.</creatorcontrib><creatorcontrib>Hunley, D. P.</creatorcontrib><creatorcontrib>Sundararajan, A.</creatorcontrib><creatorcontrib>Johnson, A. T. C.</creatorcontrib><creatorcontrib>Strachan, D. R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Johnson, S. L.</au><au>Hunley, D. P.</au><au>Sundararajan, A.</au><au>Johnson, A. T. C.</au><au>Strachan, D. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Throughput Nanogap Formation Using Single Ramp Feedback Control</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>10</volume><issue>4</issue><spage>806</spage><epage>809</epage><pages>806-809</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>We demonstrate a technique for simultaneously fabricating arrays of electromigrated nanogaps using a single-ramp feedback-controlled voltage clamp. The parallel formation is achieved by controlling the applied bias with a voltage clamp directly adjacent to a nanogap array containing low-impedance shunts. Self-balancing of the electromigration permits the two voltage leads to fix the applied voltage across all the forming nanogaps simultaneously. This single-ramp feedback-controlled voltage clamp method is at least a 100 times faster than previous work utilizing computer feedback control of parallel nanojunctions and also circumvents the deleterious thermal runaway that occurs in the conventional single-ramp technique.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TNANO.2010.2080283</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-125X |
ispartof | IEEE transactions on nanotechnology, 2011-07, Vol.10 (4), p.806-809 |
issn | 1536-125X 1941-0085 |
language | eng |
recordid | cdi_proquest_miscellaneous_896188270 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Arrays Clamps Electric potential Electromigration Electronics Exact sciences and technology Feedback control Junctions Lead molecular electronics Molecular electronics, nanoelectronics Nanocomposites nanoelectronics nanogap electrodes Nanomaterials Nanostructure parallel nanogaps Physics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Voltage Voltage control |
title | High-Throughput Nanogap Formation Using Single Ramp Feedback Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Throughput%20Nanogap%20Formation%20Using%20Single%20Ramp%20Feedback%20Control&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Johnson,%20S.%20L.&rft.date=2011-07-01&rft.volume=10&rft.issue=4&rft.spage=806&rft.epage=809&rft.pages=806-809&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2010.2080283&rft_dat=%3Cproquest_RIE%3E896188270%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=915666200&rft_id=info:pmid/&rft_ieee_id=5582297&rfr_iscdi=true |