An experimental investigation of the interaction of swirl flow with partially premixed disk stabilized propane flames

The present work describes the experimental investigation of reacting wakes established through fuel injection and staged premixing with air in an axisymmetric double cavity arrangement, formed along three concentric disks, and stabilized in the downstream vortex region of the afterbody. The burner...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental thermal and fluid science 2011-09, Vol.35 (6), p.1055-1066
Hauptverfasser: Xiouris, C., Koutmos, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present work describes the experimental investigation of reacting wakes established through fuel injection and staged premixing with air in an axisymmetric double cavity arrangement, formed along three concentric disks, and stabilized in the downstream vortex region of the afterbody. The burner assembly is operated with a co-flow of swirling air, aerodynamically introduced upstream of the burner exit plane, to allow for the study of the interaction between the resulting partially premixed recirculating afterbody flames with the surrounding swirl. At low swirl the primary afterbody disk stabilizes the partially premixed annular jet in the downstream reacting wake formation region. As swirl increases, a system of two successive vortices emerges along the axis of the developing wake; the primary afterbody vortex is cooperating with an adjacent, swirl induced, central recirculation zone and this combination further promotes turbulent mixing in the hot wake. Complementary measurements of the counterpart isothermal turbulent velocity fields provided important information on the near wake aerodynamics under the interaction of the variable swirl and the double cavity produced annular jet stabilized by the afterbody. Under reacting conditions, measurements of turbulent velocities, temperatures and statistics together with an evaluation of the exhaust emissions were performed using LDV, thin digitally-compensated thermocouples and gas analyzers. A selected number of lean and ultra-lean flames were investigated by regulating the injected fuel and the air supply ratio, while the influence of the variation of the imposed swirl on wake development, flame characteristics and emission performance was documented for constant fuel injections. The differences and similarities between the present partially premixed stabilizer and other types of axisymmetric configurations are also highlighted and discussed.
ISSN:0894-1777
1879-2286
DOI:10.1016/j.expthermflusci.2011.02.008