A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration

Iterative shrinkage/thresholding (1ST) algorithms have been recently proposed to handle a class of convex unconstrained optimization problems arising in image restoration and other linear inverse problems. This class of problems results from combining a linear observation model with a nonquadratic r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2007-12, Vol.16 (12), p.2992-3004
Hauptverfasser: Bioucas-Dias, J.M., Figueiredo, M.A.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Iterative shrinkage/thresholding (1ST) algorithms have been recently proposed to handle a class of convex unconstrained optimization problems arising in image restoration and other linear inverse problems. This class of problems results from combining a linear observation model with a nonquadratic regularizer (e.g., total variation or wavelet-based regularization). It happens that the convergence rate of these 1ST algorithms depends heavily on the linear observation operator, becoming very slow when this operator is ill-conditioned or ill-posed. In this paper, we introduce two-step 1ST (TwIST) algorithms, exhibiting much faster convergence rate than 1ST for ill-conditioned problems. For a vast class of nonquadratic convex regularizers (lscr P norms, some Besov norms, and total variation), we show that TwIST converges to a minimizer of the objective function, for a given range of values of its parameters. For noninvertible observation operators, we introduce a monotonic version of TwIST (MTwIST); although the convergence proof does not apply to this scenario, we give experimental evidence that MTwIST exhibits similar speed gains over IST. The effectiveness of the new methods are experimentally confirmed on problems of image deconvolution and of restoration with missing samples.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2007.909319