Mixed aleatory-epistemic uncertainty quantification with stochastic expansions and optimization-based interval estimation

Uncertainty quantification (UQ) is the process of determining the effect of input uncertainties on response metrics of interest. These input uncertainties may be characterized as either aleatory uncertainties, which are irreducible variabilities inherent in nature, or epistemic uncertainties, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reliability engineering & system safety 2011-09, Vol.96 (9), p.1092-1113
Hauptverfasser: Eldred, M.S., Swiler, L.P., Tang, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Uncertainty quantification (UQ) is the process of determining the effect of input uncertainties on response metrics of interest. These input uncertainties may be characterized as either aleatory uncertainties, which are irreducible variabilities inherent in nature, or epistemic uncertainties, which are reducible uncertainties resulting from a lack of knowledge. When both aleatory and epistemic uncertainties are mixed, it is desirable to maintain a segregation between aleatory and epistemic sources such that it is easy to separate and identify their contributions to the total uncertainty. Current production analyses for mixed UQ employ the use of nested sampling, where each sample taken from epistemic distributions at the outer loop results in an inner loop sampling over the aleatory probability distributions. This paper demonstrates new algorithmic capabilities for mixed UQ in which the analysis procedures are more closely tailored to the requirements of aleatory and epistemic propagation. Through the combination of stochastic expansions for computing statistics and interval optimization for computing bounds, interval-valued probability, second-order probability, and Dempster–Shafer evidence theory approaches to mixed UQ are shown to be more accurate and efficient than previously achievable.
ISSN:0951-8320
1879-0836
DOI:10.1016/j.ress.2010.11.010