Efficient algorithms for mining closed itemsets and their lattice structure

The set of frequent closed itemsets uniquely determines the exact frequency of all itemsets, yet it can be orders of magnitude smaller than the set of all frequent itemsets. In this paper, we present CHARM, an efficient algorithm for mining all frequent closed itemsets. It enumerates closed sets usi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2005-04, Vol.17 (4), p.462-478
Hauptverfasser: Zaki, M.J., Hsiao, C.-J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The set of frequent closed itemsets uniquely determines the exact frequency of all itemsets, yet it can be orders of magnitude smaller than the set of all frequent itemsets. In this paper, we present CHARM, an efficient algorithm for mining all frequent closed itemsets. It enumerates closed sets using a dual itemset-tidset search tree, using an efficient hybrid search that skips many levels. It also uses a technique called diffsets to reduce the memory footprint of intermediate computations. Finally, it uses a fast hash-based approach to remove any "nonclosed" sets found during computation. We also present CHARM-L, an algorithm that outputs the closed itemset lattice, which is very useful for rule generation and visualization. An extensive experimental evaluation on a number of real and synthetic databases shows that CHARM is a state-of-the-art algorithm that outperforms previous methods. Further, CHARM-L explicitly generates the frequent closed itemset lattice.
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2005.60