Biosorption and Biovolatilization of Arsenic by Heat-Resistant Fungi (5 pp)

The aim of this work is to show the ability of several fungal species, isolated from arsenic polluted soils, to biosorb and volatilize arsenic from a liquid medium under laboratory conditions. Mechanisms of biosorption and biovolatilization play an important role in the biogeochemical cycle of arsen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2007-01, Vol.14 Suppl 1 (S1), p.31-35
1. Verfasser: Heinrich, Almut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this work is to show the ability of several fungal species, isolated from arsenic polluted soils, to biosorb and volatilize arsenic from a liquid medium under laboratory conditions. Mechanisms of biosorption and biovolatilization play an important role in the biogeochemical cycle of arsenic in the environment. The quantification of production of volatile arsenicals is discussed in this article. Heat-resistant filamentous fungi Neosartorya fischeri, Talaromyces wortmannii, T. flavus, Eupenicillium cinnamopurpureum, originally isolated from sediments highly contaminated with arsenic (more than 1403 mg.l-1 of arsenic), and the non-heat-resistant fungus Aspergillus niger were cultivated in 40 mL liquid Sabouraud medium (SAB) enriched by 0.05, 0.25, 1.0 or 2.5 mg of inorganic arsenic (H3AsO4). After 30-day and 90-day cultivation under laboratory conditions, the total arsenic content was determined in mycelium and SAB medium using the HG AAS analytical method. Production of volatile arsenic derivates by the Neosartorya fischeri strain was also determined directly by hourly sorption using the sorbent Anasorb CSC (USA). Filamentous fungi volatilized 0.025-0.321 mg of arsenic from the cultivation system, on average, depending on arsenic concentrations and fungal species. The loss of arsenic was calculated indirectly by determining the sum of arsenic content in the mycelium and culture medium. The amount of arsenic captured on sorption material was 35.7 ng of arsenic (22nd day of cultivation) and 56.4 ng of arsenic (29th day of cultivation) after one hour's sorption. Biosorption of arsenic by two types of fungal biomass was also discussed, and the biosorption capacity for arsenic of pelletized and compact biomass of Neosartorya fischeri was on average 0.388 mg and 0.783 mg of arsenic, respectively. The biosorption and amount of volatilized arsenic for each fungal species was evaluated and the effect of initial pH on the biovolatilization of arsenic was discussed. The most effective biovolatilization of arsenic was observed in the heat-resistant Neosartorya fischeri strain, while biotransformation of arsenic into volatile derivates was approximately two times lower for the non-heat-resistant Aspergillus niger strain. Biovolatilization of arsenic by Talaromyces wortmannii, T. flavus, Eupenicillium cinnamopurpureum was negligible. Results from biosorption experiments indicate that nearly all of an uptaken arsenic by Neosartorya fischeri was transformed into
ISSN:0944-1344
1614-7499
DOI:10.1065/espr2006.11.361