Bond Shortening (1.4 Å) in the Singlet and Triplet Excited States of [Ir2(dimen)4]2+ in Solution Determined by Time-Resolved X-ray Scattering
Ground- and excited-state structures of the bimetallic, ligand-bridged compound Ir2(dimen)4 2+ are investigated in acetonitrile by means of time-resolved X-ray scattering. Following excitation by 2 ps laser pulses at 390 nm, analysis of difference scattering patterns obtained at eight different time...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2011-10, Vol.50 (19), p.9329-9336 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ground- and excited-state structures of the bimetallic, ligand-bridged compound Ir2(dimen)4 2+ are investigated in acetonitrile by means of time-resolved X-ray scattering. Following excitation by 2 ps laser pulses at 390 nm, analysis of difference scattering patterns obtained at eight different time delays from 250 ps to 300 ns yields a triplet excited-state distance between the two Ir atoms of 2.90(2) Å and a triplet excited-state lifetime of 410(70) ns. A model incorporating the presence of two ground-state structures differing in Ir–Ir separation is demonstrated to fit the obtained data very well, in agreement with previous spectroscopic investigations. Two ground-state isomers with Ir–Ir separations of 3.60(9) and 4.3(1) Å are found to contribute equally to the difference scattering signal at short time delays. Further studies demonstrate the feasibility of increasing the effective time resolution from the ∼100 ps probe width down to the 10 ps regime by positioning the laser pump pulse at selected points in the X-ray probe pulse. This approach is used to investigate the structures of both the singlet and the triplet excited states of Ir2(dimen)4 2+. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/ic2006875 |