Lidocaine Attenuates the Development of Diabetic-Induced Tactile Allodynia by Inhibiting Microglial Activation
Lidocaine is used clinically for tactile allodynia associated with diabetes-induced neuropathy. Although the analgesic effect of lidocaine through suppression of microglial activation has been implicated in the development of injury-induced neuropathic pain, its mechanism of action in diabetes-induc...
Gespeichert in:
Veröffentlicht in: | Anesthesia and analgesia 2011-10, Vol.113 (4), p.941-946 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lidocaine is used clinically for tactile allodynia associated with diabetes-induced neuropathy. Although the analgesic effect of lidocaine through suppression of microglial activation has been implicated in the development of injury-induced neuropathic pain, its mechanism of action in diabetes-induced tactile allodynia has not yet been completely elucidated.
To evaluate the effects of lidocaine on microglial response in diabetic neuropathy, streptozotocin (STZ)-injected mice received a continuous infusion of lidocaine (vehicle, 2, or 10%) from day 14 to day 21 after STZ injection. On day 21, microglial accumulation and p38 mitogen-activated protein kinase activation in the dorsal horn were evaluated. In vitro, the effects of lidocaine on cell viability, chemotactic response to monocyte chemotactic protein-1, and induction of proinflammatory mediators were examined in interferon (IFN)-γ-stimulated primary microglial cells.
Continuous systemic administration of lidocaine in the early progression of tactile allodynia produced long-lasting analgesic effects in STZ-treated mice. Lidocaine significantly reduced accumulation and p38 phosphorylation of microglial cells in the dorsal horn. In vitro, lidocaine down-regulated IFN-γ-induced gene induction of inducible oxide synthase and interleukin-1β. Pretreatment with lidocaine significantly reduced chemotactic response to monocyte chemotactic protein-1 of IFN-γ-activated microglial cells.
Lidocaine alleviates STZ-induced tactile allodynia, possibly by modulating the p38 pathway in spinal microglial cells. Inhibiting microglial activation by lidocaine treatment early in the course of diabetes-induced neuropathy represents a potential therapeutic strategy for tactile allodynia. |
---|---|
ISSN: | 0003-2999 1526-7598 |
DOI: | 10.1213/ANE.0b013e31822827a2 |