Preparation of highly dispersible and tumor-accumulative, iron oxide nanoparticles Multi-point anchoring of PEG-b-poly(4-vinylbenzylphosphonate) improves performance significantly

This paper describes the preparation of iron oxide nanoparticles, surface of which was coated with extremely high immobilization stability and relatively higher density of poly(ethylene glycol) (PEG), which are referred to as PEG protected iron oxide nanoparticles (PEG-PIONs). The PEG-PIONs were obt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2011-12, Vol.88 (2), p.771-778
Hauptverfasser: Ujiie, Kodai, Kanayama, Naoki, Asai, Kei, Kishimoto, Mikio, Ohara, Yusuke, Akashi, Yoshimasa, Yamada, Keiichi, Hashimoto, Shinji, Oda, Tatsuya, Ohkohchi, Nobuhiro, Yanagihara, Hideto, Kita, Eiji, Yamaguchi, Masayuki, Fujii, Hirofumi, Nagasaki, Yukio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes the preparation of iron oxide nanoparticles, surface of which was coated with extremely high immobilization stability and relatively higher density of poly(ethylene glycol) (PEG), which are referred to as PEG protected iron oxide nanoparticles (PEG-PIONs). The PEG-PIONs were obtained through alkali coprecipitation of iron salts in the presence of the PEG-poly(4-vinylbenzylphosphonate) block copolymer (PEG-b-PVBP). In this system, PEG-b-PVBP served as a surface coating that was bound to the iron oxide surface via multipoint anchoring of the phosphonate groups in the PVBP segment of PEG-b-PVBP. The binding of PEG-b-PVBP onto the iron oxide nanoparticle surface and the subsequent formation of a PEG brush layer were proved by FT-IR, zeta potential, and thermogravimetric measurements. The surface PEG-chain density of the PEG-PIONs varied depending on the [PEG-b-PVBP]/[iron salts] feed-weight ratio in the coprecipitation reaction. PEG-PIONs prepared at an optimal feed-weight ratio in this study showed a high surface PEG-chain surface density (≈0.8 chainsnm(-2)) and small hydrodynamic diameter (
ISSN:1873-4367
DOI:10.1016/j.colsurfb.2011.08.013