Acetazolamide-responsive exercise-induced episodic ataxia associated with a novel homozygous DARS2 mutation
BackgroundLeukoencephalopathy with brain stem and spinal cord involvement and brain lactate elevation (LBSL) was recently shown to be caused by mutations in the DARS2 gene, encoding a mitochondrial aspartyl-tRNA synthetase. So far, affected individuals were invariably compound heterozygous for two m...
Gespeichert in:
Veröffentlicht in: | Journal of medical genetics 2011-10, Vol.48 (10), p.713-715 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BackgroundLeukoencephalopathy with brain stem and spinal cord involvement and brain lactate elevation (LBSL) was recently shown to be caused by mutations in the DARS2 gene, encoding a mitochondrial aspartyl-tRNA synthetase. So far, affected individuals were invariably compound heterozygous for two mutations in DARS2, and drug treatments have remained elusive.MethodsProspective 2-year follow-up of the natural history of the main presenting symptoms in a homozygous DARS2 mutation carrier, followed by a 60 day treatment with acetazolamide in two different doses and with two random treatment interruptions.ResultsThe patient presented with exercise-induced paroxysmal gait ataxia and areflexia as an atypical phenotype associated with a novel homozygous DARS2 mutation. These features showed an excellent dose-dependent, sustained treatment response to a carbonic anhydrase inhibitor. Pathogenic mutations in episodic ataxia genes were excluded, thus making it highly unlikely that this phenotype was because of episodic ataxia as a second disorder besides LBSL.ConclusionsThis case demonstrates that DARS2 mutation homozygosity is not lethal, as suggested earlier, but compatible with a rather benign disease course. More importantly, it extends the phenotypic spectrum of LBSL and reveals that at least some DARS2-associated phenotypic features might be readily treatable. However, future observations of paroxsymal ataxia and, possibly, areflexia in other DARS2-mutated patients are warranted to further corroborate our finding that DARS2 mutations can lead to a paroxsymal ataxia phenotype. |
---|---|
ISSN: | 0022-2593 1468-6244 |
DOI: | 10.1136/jmg.2011.090282 |