Quantum spatial superresolution by optical centroid measurements
Quantum lithography (QL) has been suggested as a means of achieving enhanced spatial resolution for optical imaging, but its realization has been held back by the low multiphoton detection rates of recording materials. Recently, an optical centroid measurement (OCM) procedure was proposed as a way t...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2011-08, Vol.107 (8), p.083603-083603, Article 083603 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantum lithography (QL) has been suggested as a means of achieving enhanced spatial resolution for optical imaging, but its realization has been held back by the low multiphoton detection rates of recording materials. Recently, an optical centroid measurement (OCM) procedure was proposed as a way to obtain spatial resolution enhancement identical to that of QL but with higher detection efficiency (M. Tsang, Phys. Rev. Lett. 102, 253601 (2009)). Here we describe a variation of the OCM method with still higher detection efficiency based on the use of photon-number-resolving detection. We also report laboratory results for two-photon interference. We compare these results with those of the standard QL method based on multiphoton detection and show that the new method leads to superresolution but with higher detection efficiency. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.107.083603 |