The efficiency of cell fusion-based reprogramming is affected by the somatic cell type and the in vitro age of somatic cells

Cell fusion is one approach that has been used to demonstrate nuclear reprogramming of somatic cells to a pluripotent-like state and is a useful tool for screening factors involved in reprogramming. Recent cell fusion studies reported that the overexpression of Nanog and SalI could improve the effic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular reprogramming 2011-08, Vol.13 (4), p.331-344
Hauptverfasser: Tat, Pollyanna Agnes, Sumer, Huseyin, Pralong, Daniele, Verma, Paul John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cell fusion is one approach that has been used to demonstrate nuclear reprogramming of somatic cells to a pluripotent-like state and is a useful tool for screening factors involved in reprogramming. Recent cell fusion studies reported that the overexpression of Nanog and SalI could improve the efficiency of reprogramming, whereas AID was shown to be essential for DNA demethylation and initiation of reprogramming. The aim of this study was to investigate factors affecting the reprogramming efficiency following cell fusion. We conducted fusions of mouse embryonic stem cells (ESCs) with somatic cells carrying a GFP transgene under control of the Oct4 promoter (Oct4-GFP), which is normally repressed in nonpluripotent cells. The effect of somatic cell type on the reprogramming efficiency was investigated using Oct4-GFP expression as an indicator. Different somatic cell types were tested including mesenchymal stem cells (MSCs), adipose tissue-derived cells (ADCs), neural stem cells (NSCs), and these were compared with the mouse embryonic fibroblast (mEF) standard. The reprogramming efficiencies differed greatly, with mEFs (0.477 ± 0.003%) and MSCs (0.313 ± 0.003%) showing highest efficiencies while NSCs (0.023 ± 0.014%), and ADCs (0.006 ± 0.006%) had significantly lower reprogramming efficiencies (p 
ISSN:2152-4971
2152-4998
DOI:10.1089/cell.2011.0002