Critical quantum chaos and the one-dimensional harper model

We obtain numerically a scale-invariant distribution of the bandwidths S for the critical Harper model, which is closely described by a semi-Poisson P(S) = 4Sexp(-2S) curve. After a suitable unfolding of spectra, derived from different boundary conditions, a semi-Poisson level spacing distribution a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2000-02, Vol.84 (8), p.1643-1646
Hauptverfasser: Evangelou, SN, Pichard, J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We obtain numerically a scale-invariant distribution of the bandwidths S for the critical Harper model, which is closely described by a semi-Poisson P(S) = 4Sexp(-2S) curve. After a suitable unfolding of spectra, derived from different boundary conditions, a semi-Poisson level spacing distribution and a sub-Poisson linear number variance are deduced from the bandwidth distribution. The obtained results support possible universality of the critical spectral statistics and suggest its connection to spectral multifractality.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.84.1643