Retrieval of rat aortic smooth muscle cells as intact cell sheet for regenerative medicine: a cost effective approach using photo polymerization

Cell-based therapeutics are promising routes for the regeneration of damaged cells and organs. The recovery of cells cultured in vitro for such applications requires the use of proteolytic enzymes which deteriorate its property by disruption of cell–cell and cell–matrix interactions. Intact cell she...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology letters 2011-10, Vol.33 (10), p.2083-2089
Hauptverfasser: Mukundan, Lakshmi M, Nirmal, Remya, Thomas, Lynda V, Sajeev, U. S, Nair, Prabha D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cell-based therapeutics are promising routes for the regeneration of damaged cells and organs. The recovery of cells cultured in vitro for such applications requires the use of proteolytic enzymes which deteriorate its property by disruption of cell–cell and cell–matrix interactions. Intact cell sheets can be retrieved with the use of thermo responsive polymer grafted on to the culture plates. Our study presents the use of photo-polymerization as a simple and inexpensive way to create thermo-responsive culture surfaces for the detachment of intact cell sheet. Poly (N-isopropyl acrylamide) (PNIPAAm) was synthesized by photo-polymerization and characterized by NMR spectroscopy, differential scanning calorimetry and gel permeation chromatography. Thermo-responsive culture dishes were prepared by the coating method and characterized for its thermo-responsive efficacy using FTIR spectroscopy and water contact angle measurements. Atomic force microscopy depicted the thin coating achieved with this method is similar to the conventional grafting method. Suitability for cell culture and cell sheet retrieval was assessed by culturing rat aortic smooth muscle cells in the PNIPAAm coated tissue culture plates. The cells remained viable as evident from the live dead assay and the cell sheet was detached by low temperature treatment. The results demonstrate a versatile method for creating thermo responsive culture surfaces while eliminating the use of expensive radiation sources for the conventional grafting method.
ISSN:0141-5492
1573-6776
DOI:10.1007/s10529-011-0652-2