Numerical simulation of oxygen transport during the CZ silicon crystal growth process
In this study, the effect of the flow motion and heat transfer generated by the crystal and crucible rotation on the oxygen distribution inside the melt during Czochralski silicon crystal growth is investigated. When the crucible rotates in a direction opposite to the crystal rotation, Taylor–Pround...
Gespeichert in:
Veröffentlicht in: | Journal of crystal growth 2011-03, Vol.318 (1), p.318-323 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 323 |
---|---|
container_issue | 1 |
container_start_page | 318 |
container_title | Journal of crystal growth |
container_volume | 318 |
creator | Chen, Jyh-Chen Teng, Ying-Yang Wun, Wan-Ting Lu, Chung-Wei Chen, Hsueh-I Chen, Chi-Yung Lan, Wen-Chieh |
description | In this study, the effect of the flow motion and heat transfer generated by the crystal and crucible rotation on the oxygen distribution inside the melt during Czochralski silicon crystal growth is investigated. When the crucible rotates in a direction opposite to the crystal rotation, Taylor–Proundman vortices appear in the region below the crystal. The diffusion of oxygen impurity from the crucible wall to the crystal–melt interface is suppressed by these Taylor–Proundman vortices, while heat transport from the crucible wall to the crystal–melt interface is blocked by the Taylor–Proundman vortices. With a higher crucible rotation rate, the size of the Taylor–Proundman vortices increases and the size of the buoyancy–thermocapillary vortices decreases. This causes the temperature at the crucible wall to rise and the evaporation of oxygen impurity on the free surface to decrease. Hence, the amount of oxygen impurity that diffuses into the melt towards the crystal–melt interface increases. The suppression from the Taylor–Proundman vortices is dominant for the smaller crucible rotation rate, while the enhancement from the oxygen impurity diffusion prevails for the higher crucible rotation rate. Therefore, there is an optimum combination of crucible and crystal rotation for obtaining the lowest oxygen concentration. |
doi_str_mv | 10.1016/j.jcrysgro.2010.11.145 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889439996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024810011267</els_id><sourcerecordid>889439996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-253a54819c9ddf493367d0febb1e1457fae651f7ec091fda550d86915643bf103</originalsourceid><addsrcrecordid>eNqFkE9PwyAYh4nRxDn9CqYX46kVWmjLTbP4L1n04i5eCKMvG01XJlB1316aTa9eICHPj9_7PghdEpwRTMqbNmuV2_mVs1mOx0eSEcqO0ITUVZEyjPNjNIlnnuKc1qfozPsW45gkeIIWL8MGnFGyS7zZDJ0MxvaJ1Yn93q2gT4KTvd9aF5JmcKZfJWENyew9wp1RkRybQwzH9q-wTrbOKvD-HJ1o2Xm4ONxTtHi4f5s9pfPXx-fZ3TxVRUVDmrNCMloTrnjTaMqLoqwarGG5JBBXqLSEkhFdgcKc6EYyhpu65ISVtFhqgosput7_G3s_BvBBbIxX0HWyBzt4UdecFpzzMpLlnlTOeu9Ai60zG-l2gmAxahSt-NUoRo2CEBFniMGrQ4X00ZKOPpTxf-mc4pxRVkfuds9B3PfTgBNeGegVNMaBCqKx5r-qH3o0jXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889439996</pqid></control><display><type>article</type><title>Numerical simulation of oxygen transport during the CZ silicon crystal growth process</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Chen, Jyh-Chen ; Teng, Ying-Yang ; Wun, Wan-Ting ; Lu, Chung-Wei ; Chen, Hsueh-I ; Chen, Chi-Yung ; Lan, Wen-Chieh</creator><creatorcontrib>Chen, Jyh-Chen ; Teng, Ying-Yang ; Wun, Wan-Ting ; Lu, Chung-Wei ; Chen, Hsueh-I ; Chen, Chi-Yung ; Lan, Wen-Chieh</creatorcontrib><description>In this study, the effect of the flow motion and heat transfer generated by the crystal and crucible rotation on the oxygen distribution inside the melt during Czochralski silicon crystal growth is investigated. When the crucible rotates in a direction opposite to the crystal rotation, Taylor–Proundman vortices appear in the region below the crystal. The diffusion of oxygen impurity from the crucible wall to the crystal–melt interface is suppressed by these Taylor–Proundman vortices, while heat transport from the crucible wall to the crystal–melt interface is blocked by the Taylor–Proundman vortices. With a higher crucible rotation rate, the size of the Taylor–Proundman vortices increases and the size of the buoyancy–thermocapillary vortices decreases. This causes the temperature at the crucible wall to rise and the evaporation of oxygen impurity on the free surface to decrease. Hence, the amount of oxygen impurity that diffuses into the melt towards the crystal–melt interface increases. The suppression from the Taylor–Proundman vortices is dominant for the smaller crucible rotation rate, while the enhancement from the oxygen impurity diffusion prevails for the higher crucible rotation rate. Therefore, there is an optimum combination of crucible and crystal rotation for obtaining the lowest oxygen concentration.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2010.11.145</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Computer simulation ; A1. Heat transfer ; A1. Impurities ; A1. Mass transfer ; Applied sciences ; B3. Solar cells ; Computational fluid dynamics ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Crucibles ; Crystals ; Diffusion ; Diffusion in solids ; Energy ; Exact sciences and technology ; Fluid flow ; Growth from melts; zone melting and refining ; Impurities ; Materials science ; Methods of crystal growth; physics of crystal growth ; Natural energy ; Photovoltaic conversion ; Physics ; Solar cells. Photoelectrochemical cells ; Solar energy ; Transport properties of condensed matter (nonelectronic) ; Vortices ; Walls</subject><ispartof>Journal of crystal growth, 2011-03, Vol.318 (1), p.318-323</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-253a54819c9ddf493367d0febb1e1457fae651f7ec091fda550d86915643bf103</citedby><cites>FETCH-LOGICAL-c374t-253a54819c9ddf493367d0febb1e1457fae651f7ec091fda550d86915643bf103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2010.11.145$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3549,23929,23930,25139,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24025458$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jyh-Chen</creatorcontrib><creatorcontrib>Teng, Ying-Yang</creatorcontrib><creatorcontrib>Wun, Wan-Ting</creatorcontrib><creatorcontrib>Lu, Chung-Wei</creatorcontrib><creatorcontrib>Chen, Hsueh-I</creatorcontrib><creatorcontrib>Chen, Chi-Yung</creatorcontrib><creatorcontrib>Lan, Wen-Chieh</creatorcontrib><title>Numerical simulation of oxygen transport during the CZ silicon crystal growth process</title><title>Journal of crystal growth</title><description>In this study, the effect of the flow motion and heat transfer generated by the crystal and crucible rotation on the oxygen distribution inside the melt during Czochralski silicon crystal growth is investigated. When the crucible rotates in a direction opposite to the crystal rotation, Taylor–Proundman vortices appear in the region below the crystal. The diffusion of oxygen impurity from the crucible wall to the crystal–melt interface is suppressed by these Taylor–Proundman vortices, while heat transport from the crucible wall to the crystal–melt interface is blocked by the Taylor–Proundman vortices. With a higher crucible rotation rate, the size of the Taylor–Proundman vortices increases and the size of the buoyancy–thermocapillary vortices decreases. This causes the temperature at the crucible wall to rise and the evaporation of oxygen impurity on the free surface to decrease. Hence, the amount of oxygen impurity that diffuses into the melt towards the crystal–melt interface increases. The suppression from the Taylor–Proundman vortices is dominant for the smaller crucible rotation rate, while the enhancement from the oxygen impurity diffusion prevails for the higher crucible rotation rate. Therefore, there is an optimum combination of crucible and crystal rotation for obtaining the lowest oxygen concentration.</description><subject>A1. Computer simulation</subject><subject>A1. Heat transfer</subject><subject>A1. Impurities</subject><subject>A1. Mass transfer</subject><subject>Applied sciences</subject><subject>B3. Solar cells</subject><subject>Computational fluid dynamics</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crucibles</subject><subject>Crystals</subject><subject>Diffusion</subject><subject>Diffusion in solids</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Growth from melts; zone melting and refining</subject><subject>Impurities</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Natural energy</subject><subject>Photovoltaic conversion</subject><subject>Physics</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><subject>Vortices</subject><subject>Walls</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE9PwyAYh4nRxDn9CqYX46kVWmjLTbP4L1n04i5eCKMvG01XJlB1316aTa9eICHPj9_7PghdEpwRTMqbNmuV2_mVs1mOx0eSEcqO0ITUVZEyjPNjNIlnnuKc1qfozPsW45gkeIIWL8MGnFGyS7zZDJ0MxvaJ1Yn93q2gT4KTvd9aF5JmcKZfJWENyew9wp1RkRybQwzH9q-wTrbOKvD-HJ1o2Xm4ONxTtHi4f5s9pfPXx-fZ3TxVRUVDmrNCMloTrnjTaMqLoqwarGG5JBBXqLSEkhFdgcKc6EYyhpu65ISVtFhqgosput7_G3s_BvBBbIxX0HWyBzt4UdecFpzzMpLlnlTOeu9Ai60zG-l2gmAxahSt-NUoRo2CEBFniMGrQ4X00ZKOPpTxf-mc4pxRVkfuds9B3PfTgBNeGegVNMaBCqKx5r-qH3o0jXg</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Chen, Jyh-Chen</creator><creator>Teng, Ying-Yang</creator><creator>Wun, Wan-Ting</creator><creator>Lu, Chung-Wei</creator><creator>Chen, Hsueh-I</creator><creator>Chen, Chi-Yung</creator><creator>Lan, Wen-Chieh</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110301</creationdate><title>Numerical simulation of oxygen transport during the CZ silicon crystal growth process</title><author>Chen, Jyh-Chen ; Teng, Ying-Yang ; Wun, Wan-Ting ; Lu, Chung-Wei ; Chen, Hsueh-I ; Chen, Chi-Yung ; Lan, Wen-Chieh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-253a54819c9ddf493367d0febb1e1457fae651f7ec091fda550d86915643bf103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>A1. Computer simulation</topic><topic>A1. Heat transfer</topic><topic>A1. Impurities</topic><topic>A1. Mass transfer</topic><topic>Applied sciences</topic><topic>B3. Solar cells</topic><topic>Computational fluid dynamics</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crucibles</topic><topic>Crystals</topic><topic>Diffusion</topic><topic>Diffusion in solids</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Growth from melts; zone melting and refining</topic><topic>Impurities</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Natural energy</topic><topic>Photovoltaic conversion</topic><topic>Physics</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><topic>Vortices</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jyh-Chen</creatorcontrib><creatorcontrib>Teng, Ying-Yang</creatorcontrib><creatorcontrib>Wun, Wan-Ting</creatorcontrib><creatorcontrib>Lu, Chung-Wei</creatorcontrib><creatorcontrib>Chen, Hsueh-I</creatorcontrib><creatorcontrib>Chen, Chi-Yung</creatorcontrib><creatorcontrib>Lan, Wen-Chieh</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jyh-Chen</au><au>Teng, Ying-Yang</au><au>Wun, Wan-Ting</au><au>Lu, Chung-Wei</au><au>Chen, Hsueh-I</au><au>Chen, Chi-Yung</au><au>Lan, Wen-Chieh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of oxygen transport during the CZ silicon crystal growth process</atitle><jtitle>Journal of crystal growth</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>318</volume><issue>1</issue><spage>318</spage><epage>323</epage><pages>318-323</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>In this study, the effect of the flow motion and heat transfer generated by the crystal and crucible rotation on the oxygen distribution inside the melt during Czochralski silicon crystal growth is investigated. When the crucible rotates in a direction opposite to the crystal rotation, Taylor–Proundman vortices appear in the region below the crystal. The diffusion of oxygen impurity from the crucible wall to the crystal–melt interface is suppressed by these Taylor–Proundman vortices, while heat transport from the crucible wall to the crystal–melt interface is blocked by the Taylor–Proundman vortices. With a higher crucible rotation rate, the size of the Taylor–Proundman vortices increases and the size of the buoyancy–thermocapillary vortices decreases. This causes the temperature at the crucible wall to rise and the evaporation of oxygen impurity on the free surface to decrease. Hence, the amount of oxygen impurity that diffuses into the melt towards the crystal–melt interface increases. The suppression from the Taylor–Proundman vortices is dominant for the smaller crucible rotation rate, while the enhancement from the oxygen impurity diffusion prevails for the higher crucible rotation rate. Therefore, there is an optimum combination of crucible and crystal rotation for obtaining the lowest oxygen concentration.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2010.11.145</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2011-03, Vol.318 (1), p.318-323 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_proquest_miscellaneous_889439996 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | A1. Computer simulation A1. Heat transfer A1. Impurities A1. Mass transfer Applied sciences B3. Solar cells Computational fluid dynamics Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Crucibles Crystals Diffusion Diffusion in solids Energy Exact sciences and technology Fluid flow Growth from melts zone melting and refining Impurities Materials science Methods of crystal growth physics of crystal growth Natural energy Photovoltaic conversion Physics Solar cells. Photoelectrochemical cells Solar energy Transport properties of condensed matter (nonelectronic) Vortices Walls |
title | Numerical simulation of oxygen transport during the CZ silicon crystal growth process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A42%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20oxygen%20transport%20during%20the%20CZ%20silicon%20crystal%20growth%20process&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Chen,%20Jyh-Chen&rft.date=2011-03-01&rft.volume=318&rft.issue=1&rft.spage=318&rft.epage=323&rft.pages=318-323&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2010.11.145&rft_dat=%3Cproquest_cross%3E889439996%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889439996&rft_id=info:pmid/&rft_els_id=S0022024810011267&rfr_iscdi=true |