Numerical simulation of oxygen transport during the CZ silicon crystal growth process

In this study, the effect of the flow motion and heat transfer generated by the crystal and crucible rotation on the oxygen distribution inside the melt during Czochralski silicon crystal growth is investigated. When the crucible rotates in a direction opposite to the crystal rotation, Taylor–Pround...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2011-03, Vol.318 (1), p.318-323
Hauptverfasser: Chen, Jyh-Chen, Teng, Ying-Yang, Wun, Wan-Ting, Lu, Chung-Wei, Chen, Hsueh-I, Chen, Chi-Yung, Lan, Wen-Chieh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 323
container_issue 1
container_start_page 318
container_title Journal of crystal growth
container_volume 318
creator Chen, Jyh-Chen
Teng, Ying-Yang
Wun, Wan-Ting
Lu, Chung-Wei
Chen, Hsueh-I
Chen, Chi-Yung
Lan, Wen-Chieh
description In this study, the effect of the flow motion and heat transfer generated by the crystal and crucible rotation on the oxygen distribution inside the melt during Czochralski silicon crystal growth is investigated. When the crucible rotates in a direction opposite to the crystal rotation, Taylor–Proundman vortices appear in the region below the crystal. The diffusion of oxygen impurity from the crucible wall to the crystal–melt interface is suppressed by these Taylor–Proundman vortices, while heat transport from the crucible wall to the crystal–melt interface is blocked by the Taylor–Proundman vortices. With a higher crucible rotation rate, the size of the Taylor–Proundman vortices increases and the size of the buoyancy–thermocapillary vortices decreases. This causes the temperature at the crucible wall to rise and the evaporation of oxygen impurity on the free surface to decrease. Hence, the amount of oxygen impurity that diffuses into the melt towards the crystal–melt interface increases. The suppression from the Taylor–Proundman vortices is dominant for the smaller crucible rotation rate, while the enhancement from the oxygen impurity diffusion prevails for the higher crucible rotation rate. Therefore, there is an optimum combination of crucible and crystal rotation for obtaining the lowest oxygen concentration.
doi_str_mv 10.1016/j.jcrysgro.2010.11.145
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889439996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024810011267</els_id><sourcerecordid>889439996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-253a54819c9ddf493367d0febb1e1457fae651f7ec091fda550d86915643bf103</originalsourceid><addsrcrecordid>eNqFkE9PwyAYh4nRxDn9CqYX46kVWmjLTbP4L1n04i5eCKMvG01XJlB1316aTa9eICHPj9_7PghdEpwRTMqbNmuV2_mVs1mOx0eSEcqO0ITUVZEyjPNjNIlnnuKc1qfozPsW45gkeIIWL8MGnFGyS7zZDJ0MxvaJ1Yn93q2gT4KTvd9aF5JmcKZfJWENyew9wp1RkRybQwzH9q-wTrbOKvD-HJ1o2Xm4ONxTtHi4f5s9pfPXx-fZ3TxVRUVDmrNCMloTrnjTaMqLoqwarGG5JBBXqLSEkhFdgcKc6EYyhpu65ISVtFhqgosput7_G3s_BvBBbIxX0HWyBzt4UdecFpzzMpLlnlTOeu9Ai60zG-l2gmAxahSt-NUoRo2CEBFniMGrQ4X00ZKOPpTxf-mc4pxRVkfuds9B3PfTgBNeGegVNMaBCqKx5r-qH3o0jXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889439996</pqid></control><display><type>article</type><title>Numerical simulation of oxygen transport during the CZ silicon crystal growth process</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Chen, Jyh-Chen ; Teng, Ying-Yang ; Wun, Wan-Ting ; Lu, Chung-Wei ; Chen, Hsueh-I ; Chen, Chi-Yung ; Lan, Wen-Chieh</creator><creatorcontrib>Chen, Jyh-Chen ; Teng, Ying-Yang ; Wun, Wan-Ting ; Lu, Chung-Wei ; Chen, Hsueh-I ; Chen, Chi-Yung ; Lan, Wen-Chieh</creatorcontrib><description>In this study, the effect of the flow motion and heat transfer generated by the crystal and crucible rotation on the oxygen distribution inside the melt during Czochralski silicon crystal growth is investigated. When the crucible rotates in a direction opposite to the crystal rotation, Taylor–Proundman vortices appear in the region below the crystal. The diffusion of oxygen impurity from the crucible wall to the crystal–melt interface is suppressed by these Taylor–Proundman vortices, while heat transport from the crucible wall to the crystal–melt interface is blocked by the Taylor–Proundman vortices. With a higher crucible rotation rate, the size of the Taylor–Proundman vortices increases and the size of the buoyancy–thermocapillary vortices decreases. This causes the temperature at the crucible wall to rise and the evaporation of oxygen impurity on the free surface to decrease. Hence, the amount of oxygen impurity that diffuses into the melt towards the crystal–melt interface increases. The suppression from the Taylor–Proundman vortices is dominant for the smaller crucible rotation rate, while the enhancement from the oxygen impurity diffusion prevails for the higher crucible rotation rate. Therefore, there is an optimum combination of crucible and crystal rotation for obtaining the lowest oxygen concentration.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2010.11.145</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Computer simulation ; A1. Heat transfer ; A1. Impurities ; A1. Mass transfer ; Applied sciences ; B3. Solar cells ; Computational fluid dynamics ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Crucibles ; Crystals ; Diffusion ; Diffusion in solids ; Energy ; Exact sciences and technology ; Fluid flow ; Growth from melts; zone melting and refining ; Impurities ; Materials science ; Methods of crystal growth; physics of crystal growth ; Natural energy ; Photovoltaic conversion ; Physics ; Solar cells. Photoelectrochemical cells ; Solar energy ; Transport properties of condensed matter (nonelectronic) ; Vortices ; Walls</subject><ispartof>Journal of crystal growth, 2011-03, Vol.318 (1), p.318-323</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-253a54819c9ddf493367d0febb1e1457fae651f7ec091fda550d86915643bf103</citedby><cites>FETCH-LOGICAL-c374t-253a54819c9ddf493367d0febb1e1457fae651f7ec091fda550d86915643bf103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2010.11.145$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3549,23929,23930,25139,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24025458$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jyh-Chen</creatorcontrib><creatorcontrib>Teng, Ying-Yang</creatorcontrib><creatorcontrib>Wun, Wan-Ting</creatorcontrib><creatorcontrib>Lu, Chung-Wei</creatorcontrib><creatorcontrib>Chen, Hsueh-I</creatorcontrib><creatorcontrib>Chen, Chi-Yung</creatorcontrib><creatorcontrib>Lan, Wen-Chieh</creatorcontrib><title>Numerical simulation of oxygen transport during the CZ silicon crystal growth process</title><title>Journal of crystal growth</title><description>In this study, the effect of the flow motion and heat transfer generated by the crystal and crucible rotation on the oxygen distribution inside the melt during Czochralski silicon crystal growth is investigated. When the crucible rotates in a direction opposite to the crystal rotation, Taylor–Proundman vortices appear in the region below the crystal. The diffusion of oxygen impurity from the crucible wall to the crystal–melt interface is suppressed by these Taylor–Proundman vortices, while heat transport from the crucible wall to the crystal–melt interface is blocked by the Taylor–Proundman vortices. With a higher crucible rotation rate, the size of the Taylor–Proundman vortices increases and the size of the buoyancy–thermocapillary vortices decreases. This causes the temperature at the crucible wall to rise and the evaporation of oxygen impurity on the free surface to decrease. Hence, the amount of oxygen impurity that diffuses into the melt towards the crystal–melt interface increases. The suppression from the Taylor–Proundman vortices is dominant for the smaller crucible rotation rate, while the enhancement from the oxygen impurity diffusion prevails for the higher crucible rotation rate. Therefore, there is an optimum combination of crucible and crystal rotation for obtaining the lowest oxygen concentration.</description><subject>A1. Computer simulation</subject><subject>A1. Heat transfer</subject><subject>A1. Impurities</subject><subject>A1. Mass transfer</subject><subject>Applied sciences</subject><subject>B3. Solar cells</subject><subject>Computational fluid dynamics</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crucibles</subject><subject>Crystals</subject><subject>Diffusion</subject><subject>Diffusion in solids</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Growth from melts; zone melting and refining</subject><subject>Impurities</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Natural energy</subject><subject>Photovoltaic conversion</subject><subject>Physics</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><subject>Vortices</subject><subject>Walls</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE9PwyAYh4nRxDn9CqYX46kVWmjLTbP4L1n04i5eCKMvG01XJlB1316aTa9eICHPj9_7PghdEpwRTMqbNmuV2_mVs1mOx0eSEcqO0ITUVZEyjPNjNIlnnuKc1qfozPsW45gkeIIWL8MGnFGyS7zZDJ0MxvaJ1Yn93q2gT4KTvd9aF5JmcKZfJWENyew9wp1RkRybQwzH9q-wTrbOKvD-HJ1o2Xm4ONxTtHi4f5s9pfPXx-fZ3TxVRUVDmrNCMloTrnjTaMqLoqwarGG5JBBXqLSEkhFdgcKc6EYyhpu65ISVtFhqgosput7_G3s_BvBBbIxX0HWyBzt4UdecFpzzMpLlnlTOeu9Ai60zG-l2gmAxahSt-NUoRo2CEBFniMGrQ4X00ZKOPpTxf-mc4pxRVkfuds9B3PfTgBNeGegVNMaBCqKx5r-qH3o0jXg</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Chen, Jyh-Chen</creator><creator>Teng, Ying-Yang</creator><creator>Wun, Wan-Ting</creator><creator>Lu, Chung-Wei</creator><creator>Chen, Hsueh-I</creator><creator>Chen, Chi-Yung</creator><creator>Lan, Wen-Chieh</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110301</creationdate><title>Numerical simulation of oxygen transport during the CZ silicon crystal growth process</title><author>Chen, Jyh-Chen ; Teng, Ying-Yang ; Wun, Wan-Ting ; Lu, Chung-Wei ; Chen, Hsueh-I ; Chen, Chi-Yung ; Lan, Wen-Chieh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-253a54819c9ddf493367d0febb1e1457fae651f7ec091fda550d86915643bf103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>A1. Computer simulation</topic><topic>A1. Heat transfer</topic><topic>A1. Impurities</topic><topic>A1. Mass transfer</topic><topic>Applied sciences</topic><topic>B3. Solar cells</topic><topic>Computational fluid dynamics</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crucibles</topic><topic>Crystals</topic><topic>Diffusion</topic><topic>Diffusion in solids</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Growth from melts; zone melting and refining</topic><topic>Impurities</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Natural energy</topic><topic>Photovoltaic conversion</topic><topic>Physics</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><topic>Vortices</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jyh-Chen</creatorcontrib><creatorcontrib>Teng, Ying-Yang</creatorcontrib><creatorcontrib>Wun, Wan-Ting</creatorcontrib><creatorcontrib>Lu, Chung-Wei</creatorcontrib><creatorcontrib>Chen, Hsueh-I</creatorcontrib><creatorcontrib>Chen, Chi-Yung</creatorcontrib><creatorcontrib>Lan, Wen-Chieh</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jyh-Chen</au><au>Teng, Ying-Yang</au><au>Wun, Wan-Ting</au><au>Lu, Chung-Wei</au><au>Chen, Hsueh-I</au><au>Chen, Chi-Yung</au><au>Lan, Wen-Chieh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of oxygen transport during the CZ silicon crystal growth process</atitle><jtitle>Journal of crystal growth</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>318</volume><issue>1</issue><spage>318</spage><epage>323</epage><pages>318-323</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>In this study, the effect of the flow motion and heat transfer generated by the crystal and crucible rotation on the oxygen distribution inside the melt during Czochralski silicon crystal growth is investigated. When the crucible rotates in a direction opposite to the crystal rotation, Taylor–Proundman vortices appear in the region below the crystal. The diffusion of oxygen impurity from the crucible wall to the crystal–melt interface is suppressed by these Taylor–Proundman vortices, while heat transport from the crucible wall to the crystal–melt interface is blocked by the Taylor–Proundman vortices. With a higher crucible rotation rate, the size of the Taylor–Proundman vortices increases and the size of the buoyancy–thermocapillary vortices decreases. This causes the temperature at the crucible wall to rise and the evaporation of oxygen impurity on the free surface to decrease. Hence, the amount of oxygen impurity that diffuses into the melt towards the crystal–melt interface increases. The suppression from the Taylor–Proundman vortices is dominant for the smaller crucible rotation rate, while the enhancement from the oxygen impurity diffusion prevails for the higher crucible rotation rate. Therefore, there is an optimum combination of crucible and crystal rotation for obtaining the lowest oxygen concentration.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2010.11.145</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2011-03, Vol.318 (1), p.318-323
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_miscellaneous_889439996
source ScienceDirect Journals (5 years ago - present)
subjects A1. Computer simulation
A1. Heat transfer
A1. Impurities
A1. Mass transfer
Applied sciences
B3. Solar cells
Computational fluid dynamics
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Crucibles
Crystals
Diffusion
Diffusion in solids
Energy
Exact sciences and technology
Fluid flow
Growth from melts
zone melting and refining
Impurities
Materials science
Methods of crystal growth
physics of crystal growth
Natural energy
Photovoltaic conversion
Physics
Solar cells. Photoelectrochemical cells
Solar energy
Transport properties of condensed matter (nonelectronic)
Vortices
Walls
title Numerical simulation of oxygen transport during the CZ silicon crystal growth process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A42%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20oxygen%20transport%20during%20the%20CZ%20silicon%20crystal%20growth%20process&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Chen,%20Jyh-Chen&rft.date=2011-03-01&rft.volume=318&rft.issue=1&rft.spage=318&rft.epage=323&rft.pages=318-323&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2010.11.145&rft_dat=%3Cproquest_cross%3E889439996%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889439996&rft_id=info:pmid/&rft_els_id=S0022024810011267&rfr_iscdi=true