Numerical simulation of oxygen transport during the CZ silicon crystal growth process

In this study, the effect of the flow motion and heat transfer generated by the crystal and crucible rotation on the oxygen distribution inside the melt during Czochralski silicon crystal growth is investigated. When the crucible rotates in a direction opposite to the crystal rotation, Taylor–Pround...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2011-03, Vol.318 (1), p.318-323
Hauptverfasser: Chen, Jyh-Chen, Teng, Ying-Yang, Wun, Wan-Ting, Lu, Chung-Wei, Chen, Hsueh-I, Chen, Chi-Yung, Lan, Wen-Chieh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, the effect of the flow motion and heat transfer generated by the crystal and crucible rotation on the oxygen distribution inside the melt during Czochralski silicon crystal growth is investigated. When the crucible rotates in a direction opposite to the crystal rotation, Taylor–Proundman vortices appear in the region below the crystal. The diffusion of oxygen impurity from the crucible wall to the crystal–melt interface is suppressed by these Taylor–Proundman vortices, while heat transport from the crucible wall to the crystal–melt interface is blocked by the Taylor–Proundman vortices. With a higher crucible rotation rate, the size of the Taylor–Proundman vortices increases and the size of the buoyancy–thermocapillary vortices decreases. This causes the temperature at the crucible wall to rise and the evaporation of oxygen impurity on the free surface to decrease. Hence, the amount of oxygen impurity that diffuses into the melt towards the crystal–melt interface increases. The suppression from the Taylor–Proundman vortices is dominant for the smaller crucible rotation rate, while the enhancement from the oxygen impurity diffusion prevails for the higher crucible rotation rate. Therefore, there is an optimum combination of crucible and crystal rotation for obtaining the lowest oxygen concentration.
ISSN:0022-0248
1873-5002
DOI:10.1016/j.jcrysgro.2010.11.145