CA-Tree: A Hierarchical Structure for Efficient and Scalable Coassociation-Based Cluster Ensembles

Cluster ensembles have attracted a lot of research interests in recent years, and their applications continue to expand. Among the various algorithms for cluster ensembles, those based on coassociation matrices are probably the ones studied and used the most because coassociation matrices are easy t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2011-06, Vol.41 (3), p.686-698
1. Verfasser: Wang, Tsaipei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 698
container_issue 3
container_start_page 686
container_title IEEE transactions on cybernetics
container_volume 41
creator Wang, Tsaipei
description Cluster ensembles have attracted a lot of research interests in recent years, and their applications continue to expand. Among the various algorithms for cluster ensembles, those based on coassociation matrices are probably the ones studied and used the most because coassociation matrices are easy to understand and implement. However, the main limitation of coassociation matrices as the data structure for combining multiple clusterings is the complexity that is at least quadratic to the number of patterns N . In this paper, we propose CA-tree, which is a dendogram-like hierarchical data structure, to facilitate efficient and scalable cluster ensembles for coassociation-matrix-based algorithms. All the properties of the CA-tree are derived from base cluster labels and do not require the access to the original data features. We then apply a threshold to the CA-tree to obtain a set of nodes, which are then used in place of the original patterns for ensemble-clustering algorithms. The experiments demonstrate that the complexity for coassociation-based cluster ensembles can be reduced to close to linear to N with minimal loss on clustering accuracy.
doi_str_mv 10.1109/TSMCB.2010.2086059
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_889436119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5625918</ieee_id><sourcerecordid>889436119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-37c6464b1d217786a43501c21eab87e5f55046e408b04be82dc9c3a87a0bc9153</originalsourceid><addsrcrecordid>eNqFkUtP3DAURi3UisfQPwASsrrpKvTa8bO7IeJRiYrFTNeR49wIo0wCdrLg39fTGViwYXV95fN90tUh5IzBJWNgf65Xf6qrSw5552AUSHtAjpkVrABh-Zf8BlMWQjB7RE5SegIAC1YfkiPOQEvN9TFpqmWxjoi_6JLeBYwu-sfgXU9XU5z9NEek3RjpddcFH3CYqBtausqAa3qk1ehSGn1wUxiH4solbGnVz2nCHBkSbjKUTsnXzvUJv-3ngvy9uV5Xd8X9w-3vanlfeCH0VJTaK6FEw1rOtDbKiVIC85yha4xG2UkJQqEA04Bo0PDWW186ox003jJZLsiPXe9zHF9mTFO9Cclj37sBxznVxlhRKsbs56QywLUpVSa_fyCfxjkO-YwMabHltnV8B_k4phSxq59j2Lj4WjOot6bq_6bqral6byqHLvbNc7PB9j3ypiYD5zsgIOL7t1RcWmbKf9uLlZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867468029</pqid></control><display><type>article</type><title>CA-Tree: A Hierarchical Structure for Efficient and Scalable Coassociation-Based Cluster Ensembles</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Tsaipei</creator><creatorcontrib>Wang, Tsaipei</creatorcontrib><description>Cluster ensembles have attracted a lot of research interests in recent years, and their applications continue to expand. Among the various algorithms for cluster ensembles, those based on coassociation matrices are probably the ones studied and used the most because coassociation matrices are easy to understand and implement. However, the main limitation of coassociation matrices as the data structure for combining multiple clusterings is the complexity that is at least quadratic to the number of patterns N . In this paper, we propose CA-tree, which is a dendogram-like hierarchical data structure, to facilitate efficient and scalable cluster ensembles for coassociation-matrix-based algorithms. All the properties of the CA-tree are derived from base cluster labels and do not require the access to the original data features. We then apply a threshold to the CA-tree to obtain a set of nodes, which are then used in place of the original patterns for ensemble-clustering algorithms. The experiments demonstrate that the complexity for coassociation-based cluster ensembles can be reduced to close to linear to N with minimal loss on clustering accuracy.</description><identifier>ISSN: 1083-4419</identifier><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 1941-0492</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TSMCB.2010.2086059</identifier><identifier>PMID: 21075727</identifier><identifier>CODEN: ITSCFI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial Intelligence ; Buildings ; Cluster Analysis ; Cluster ensemble ; Clustering algorithms ; Clusters ; coassociation matrix ; Complexity ; Complexity theory ; Computer Simulation ; Cybernetics ; Data structures ; Decision Support Techniques ; Diversity reception ; Mathematical analysis ; Matrices ; Matrix methods ; Models, Theoretical ; multiple clusterings ; Partitioning algorithms ; Pattern Recognition, Automated - methods ; Prototypes ; Upper bound</subject><ispartof>IEEE transactions on cybernetics, 2011-06, Vol.41 (3), p.686-698</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-37c6464b1d217786a43501c21eab87e5f55046e408b04be82dc9c3a87a0bc9153</citedby><cites>FETCH-LOGICAL-c447t-37c6464b1d217786a43501c21eab87e5f55046e408b04be82dc9c3a87a0bc9153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5625918$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5625918$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21075727$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Tsaipei</creatorcontrib><title>CA-Tree: A Hierarchical Structure for Efficient and Scalable Coassociation-Based Cluster Ensembles</title><title>IEEE transactions on cybernetics</title><addtitle>TSMCB</addtitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><description>Cluster ensembles have attracted a lot of research interests in recent years, and their applications continue to expand. Among the various algorithms for cluster ensembles, those based on coassociation matrices are probably the ones studied and used the most because coassociation matrices are easy to understand and implement. However, the main limitation of coassociation matrices as the data structure for combining multiple clusterings is the complexity that is at least quadratic to the number of patterns N . In this paper, we propose CA-tree, which is a dendogram-like hierarchical data structure, to facilitate efficient and scalable cluster ensembles for coassociation-matrix-based algorithms. All the properties of the CA-tree are derived from base cluster labels and do not require the access to the original data features. We then apply a threshold to the CA-tree to obtain a set of nodes, which are then used in place of the original patterns for ensemble-clustering algorithms. The experiments demonstrate that the complexity for coassociation-based cluster ensembles can be reduced to close to linear to N with minimal loss on clustering accuracy.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Buildings</subject><subject>Cluster Analysis</subject><subject>Cluster ensemble</subject><subject>Clustering algorithms</subject><subject>Clusters</subject><subject>coassociation matrix</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Computer Simulation</subject><subject>Cybernetics</subject><subject>Data structures</subject><subject>Decision Support Techniques</subject><subject>Diversity reception</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Matrix methods</subject><subject>Models, Theoretical</subject><subject>multiple clusterings</subject><subject>Partitioning algorithms</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Prototypes</subject><subject>Upper bound</subject><issn>1083-4419</issn><issn>2168-2267</issn><issn>1941-0492</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUtP3DAURi3UisfQPwASsrrpKvTa8bO7IeJRiYrFTNeR49wIo0wCdrLg39fTGViwYXV95fN90tUh5IzBJWNgf65Xf6qrSw5552AUSHtAjpkVrABh-Zf8BlMWQjB7RE5SegIAC1YfkiPOQEvN9TFpqmWxjoi_6JLeBYwu-sfgXU9XU5z9NEek3RjpddcFH3CYqBtausqAa3qk1ehSGn1wUxiH4solbGnVz2nCHBkSbjKUTsnXzvUJv-3ngvy9uV5Xd8X9w-3vanlfeCH0VJTaK6FEw1rOtDbKiVIC85yha4xG2UkJQqEA04Bo0PDWW186ox003jJZLsiPXe9zHF9mTFO9Cclj37sBxznVxlhRKsbs56QywLUpVSa_fyCfxjkO-YwMabHltnV8B_k4phSxq59j2Lj4WjOot6bq_6bqral6byqHLvbNc7PB9j3ypiYD5zsgIOL7t1RcWmbKf9uLlZQ</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Wang, Tsaipei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201106</creationdate><title>CA-Tree: A Hierarchical Structure for Efficient and Scalable Coassociation-Based Cluster Ensembles</title><author>Wang, Tsaipei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-37c6464b1d217786a43501c21eab87e5f55046e408b04be82dc9c3a87a0bc9153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Buildings</topic><topic>Cluster Analysis</topic><topic>Cluster ensemble</topic><topic>Clustering algorithms</topic><topic>Clusters</topic><topic>coassociation matrix</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Computer Simulation</topic><topic>Cybernetics</topic><topic>Data structures</topic><topic>Decision Support Techniques</topic><topic>Diversity reception</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Matrix methods</topic><topic>Models, Theoretical</topic><topic>multiple clusterings</topic><topic>Partitioning algorithms</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Prototypes</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tsaipei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Tsaipei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CA-Tree: A Hierarchical Structure for Efficient and Scalable Coassociation-Based Cluster Ensembles</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TSMCB</stitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><date>2011-06</date><risdate>2011</risdate><volume>41</volume><issue>3</issue><spage>686</spage><epage>698</epage><pages>686-698</pages><issn>1083-4419</issn><issn>2168-2267</issn><eissn>1941-0492</eissn><eissn>2168-2275</eissn><coden>ITSCFI</coden><abstract>Cluster ensembles have attracted a lot of research interests in recent years, and their applications continue to expand. Among the various algorithms for cluster ensembles, those based on coassociation matrices are probably the ones studied and used the most because coassociation matrices are easy to understand and implement. However, the main limitation of coassociation matrices as the data structure for combining multiple clusterings is the complexity that is at least quadratic to the number of patterns N . In this paper, we propose CA-tree, which is a dendogram-like hierarchical data structure, to facilitate efficient and scalable cluster ensembles for coassociation-matrix-based algorithms. All the properties of the CA-tree are derived from base cluster labels and do not require the access to the original data features. We then apply a threshold to the CA-tree to obtain a set of nodes, which are then used in place of the original patterns for ensemble-clustering algorithms. The experiments demonstrate that the complexity for coassociation-based cluster ensembles can be reduced to close to linear to N with minimal loss on clustering accuracy.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>21075727</pmid><doi>10.1109/TSMCB.2010.2086059</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4419
ispartof IEEE transactions on cybernetics, 2011-06, Vol.41 (3), p.686-698
issn 1083-4419
2168-2267
1941-0492
2168-2275
language eng
recordid cdi_proquest_miscellaneous_889436119
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial Intelligence
Buildings
Cluster Analysis
Cluster ensemble
Clustering algorithms
Clusters
coassociation matrix
Complexity
Complexity theory
Computer Simulation
Cybernetics
Data structures
Decision Support Techniques
Diversity reception
Mathematical analysis
Matrices
Matrix methods
Models, Theoretical
multiple clusterings
Partitioning algorithms
Pattern Recognition, Automated - methods
Prototypes
Upper bound
title CA-Tree: A Hierarchical Structure for Efficient and Scalable Coassociation-Based Cluster Ensembles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A38%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CA-Tree:%20A%20Hierarchical%20Structure%20for%20Efficient%20and%20Scalable%20Coassociation-Based%20Cluster%20Ensembles&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Wang,%20Tsaipei&rft.date=2011-06&rft.volume=41&rft.issue=3&rft.spage=686&rft.epage=698&rft.pages=686-698&rft.issn=1083-4419&rft.eissn=1941-0492&rft.coden=ITSCFI&rft_id=info:doi/10.1109/TSMCB.2010.2086059&rft_dat=%3Cproquest_RIE%3E889436119%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867468029&rft_id=info:pmid/21075727&rft_ieee_id=5625918&rfr_iscdi=true