CA-Tree: A Hierarchical Structure for Efficient and Scalable Coassociation-Based Cluster Ensembles

Cluster ensembles have attracted a lot of research interests in recent years, and their applications continue to expand. Among the various algorithms for cluster ensembles, those based on coassociation matrices are probably the ones studied and used the most because coassociation matrices are easy t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2011-06, Vol.41 (3), p.686-698
1. Verfasser: Wang, Tsaipei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cluster ensembles have attracted a lot of research interests in recent years, and their applications continue to expand. Among the various algorithms for cluster ensembles, those based on coassociation matrices are probably the ones studied and used the most because coassociation matrices are easy to understand and implement. However, the main limitation of coassociation matrices as the data structure for combining multiple clusterings is the complexity that is at least quadratic to the number of patterns N . In this paper, we propose CA-tree, which is a dendogram-like hierarchical data structure, to facilitate efficient and scalable cluster ensembles for coassociation-matrix-based algorithms. All the properties of the CA-tree are derived from base cluster labels and do not require the access to the original data features. We then apply a threshold to the CA-tree to obtain a set of nodes, which are then used in place of the original patterns for ensemble-clustering algorithms. The experiments demonstrate that the complexity for coassociation-based cluster ensembles can be reduced to close to linear to N with minimal loss on clustering accuracy.
ISSN:1083-4419
2168-2267
1941-0492
2168-2275
DOI:10.1109/TSMCB.2010.2086059