The Complexity of Optimal Job Co-Scheduling on Chip Multiprocessors and Heuristics-Based Solutions

In Chip Multiprocessors (CMPs) architecture, it is common that multiple cores share some on-chip cache. The sharing may cause cache thrashing and contention among co-running jobs. Job co-scheduling is an approach to tackling the problem by assigning jobs to cores appropriately so that the contention...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems 2011-07, Vol.22 (7), p.1192-1205
Hauptverfasser: Yunlian Jiang, Kai Tian, Xipeng Shen, Jinghe Zhang, Jie Chen, Tripathi, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In Chip Multiprocessors (CMPs) architecture, it is common that multiple cores share some on-chip cache. The sharing may cause cache thrashing and contention among co-running jobs. Job co-scheduling is an approach to tackling the problem by assigning jobs to cores appropriately so that the contention and consequent performance degradations are minimized. Job co-scheduling includes two tasks: the estimation of co-run performance, and the determination of suitable co-schedules. Most existing studies in job co-scheduling have concentrated on the first task but relies on simple techniques (e.g., trying different schedules) for the second. This paper presents a systematic exploration to the second task. The paper uncovers the computational complexity of the determination of optimal job co-schedules, proving its NP-completeness. It introduces a set of algorithms, based on graph theory and Integer/Linear Programming, for computing optimal co-schedules or their lower bounds in scenarios with or without job migrations. For complex cases, it empirically demonstrates the feasibility for approximating the optimal effectively by proposing several heuristics-based algorithms. These discoveries may facilitate the assessment of job co-schedulers by providing necessary baselines, as well as shed insights to the development of co-scheduling algorithms in practical systems.
ISSN:1045-9219
1558-2183
DOI:10.1109/TPDS.2010.193