Topological transitivity for a class of monotonic mod one transformations
Suppose that f : [0, 1] → [0, 2] is a continuous strictly increasing piecewise differentiable function, and define T f x := f ( x ) (mod 1). Let . It is proved that T f is topologically transitive if inf f ′ ≥ β and . Counterexamples are provided if the assumptions are not satisfied. For and 0 ≤ ...
Gespeichert in:
Veröffentlicht in: | Aequationes mathematicae 2011-09, Vol.82 (1-2), p.91-109 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Suppose that
f
: [0, 1] → [0, 2] is a continuous strictly increasing piecewise differentiable function, and define
T
f
x
:=
f
(
x
) (mod 1). Let
. It is proved that
T
f
is topologically transitive if inf
f
′ ≥
β
and
. Counterexamples are provided if the assumptions are not satisfied. For
and 0 ≤
α
≤ 2 −
β
it is shown that
βx
+
α
(mod 1) is topologically transitive if and only if
or
. |
---|---|
ISSN: | 0001-9054 1420-8903 |
DOI: | 10.1007/s00010-011-0072-3 |