Topological transitivity for a class of monotonic mod one transformations

Suppose that f : [0, 1] → [0, 2] is a continuous strictly increasing piecewise differentiable function, and define T f x :=  f ( x ) (mod 1). Let . It is proved that T f is topologically transitive if inf f ′ ≥  β and . Counterexamples are provided if the assumptions are not satisfied. For and 0 ≤ ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aequationes mathematicae 2011-09, Vol.82 (1-2), p.91-109
Hauptverfasser: Raith, Peter, Stachelberger, Angela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Suppose that f : [0, 1] → [0, 2] is a continuous strictly increasing piecewise differentiable function, and define T f x :=  f ( x ) (mod 1). Let . It is proved that T f is topologically transitive if inf f ′ ≥  β and . Counterexamples are provided if the assumptions are not satisfied. For and 0 ≤  α  ≤ 2 − β it is shown that βx  +  α (mod 1) is topologically transitive if and only if or .
ISSN:0001-9054
1420-8903
DOI:10.1007/s00010-011-0072-3