Global weak solutions to the weakly dissipative Degasperis–Procesi equation

The global weak solutions for the Degasperis–Procesi equation with weakly dissipative term are investigated. Provided that u 0 ∈ H 1 ( R ) , y 0 = ( 1 − ∂ x 2 ) u 0 ∈ M ( R ) , supp y 0 − ⊂ ( − ∞ , x 0 ) and supp y 0 + ⊂ ( x 0 , ∞ ) , the existence and uniqueness of global weak solutions for the equ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2011-10, Vol.74 (15), p.4961-4973
Hauptverfasser: Guo, Yunxi, Lai, Shaoyong, Wang, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4973
container_issue 15
container_start_page 4961
container_title Nonlinear analysis
container_volume 74
creator Guo, Yunxi
Lai, Shaoyong
Wang, Ying
description The global weak solutions for the Degasperis–Procesi equation with weakly dissipative term are investigated. Provided that u 0 ∈ H 1 ( R ) , y 0 = ( 1 − ∂ x 2 ) u 0 ∈ M ( R ) , supp y 0 − ⊂ ( − ∞ , x 0 ) and supp y 0 + ⊂ ( x 0 , ∞ ) , the existence and uniqueness of global weak solutions for the equation are shown to be true in the space W l o c 1 , ∞ ( R + × R ) ∩ L l o c ∞ ( R + ; H 1 ( R ) ) .
doi_str_mv 10.1016/j.na.2011.04.051
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889428706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X11002550</els_id><sourcerecordid>889428706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-b285a46ad34feb160780e99ef00e30477367907855aaff2d2b1651bdb8cfeac33</originalsourceid><addsrcrecordid>eNp1kM9KxEAMxgdRcF29e-xFPLVm2k7b9Sb-B0UPCt6GdJrqrN3OOukq3nwH39AncdYVb0IgEH7fl-QTYldCIkEWB9OkxyQFKRPIE1ByTYxkVWaxSqVaFyPIijRWefGwKbaYpwAgy6wYievzztXYRW-EzxG7bjFY13M0uGh4op9p9x41ltnOcbCvFJ3QI_KcvOWvj89b7wyxjehlgUvhtthosWPa-e1jcX92end8EV_dnF8eH13FJlPFENdppTAvsMnylmpZQFkBTSbUAlAGeRkuKydhqBRi26ZNGhgl66auTEtosmws9le-c-9eFsSDnlk21HXYk1uwrqpJnlYlFIGEFWm8Y_bU6rm3M_TvWoJeBqenuke9DE5DrkNwQbL3a45ssGs99sbyny4NzipU4A5XHIVPXy15zcZSb6ixnsygG2f_X_INmI2D3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889428706</pqid></control><display><type>article</type><title>Global weak solutions to the weakly dissipative Degasperis–Procesi equation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Guo, Yunxi ; Lai, Shaoyong ; Wang, Ying</creator><creatorcontrib>Guo, Yunxi ; Lai, Shaoyong ; Wang, Ying</creatorcontrib><description>The global weak solutions for the Degasperis–Procesi equation with weakly dissipative term are investigated. Provided that u 0 ∈ H 1 ( R ) , y 0 = ( 1 − ∂ x 2 ) u 0 ∈ M ( R ) , supp y 0 − ⊂ ( − ∞ , x 0 ) and supp y 0 + ⊂ ( x 0 , ∞ ) , the existence and uniqueness of global weak solutions for the equation are shown to be true in the space W l o c 1 , ∞ ( R + × R ) ∩ L l o c ∞ ( R + ; H 1 ( R ) ) .</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2011.04.051</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Dissipation ; Exact sciences and technology ; Existence ; Global weak solution ; Mathematical analysis ; Mathematics ; Nonlinearity ; Sciences and techniques of general use ; The weakly dissipative Degasperis–Procesi equation ; Uniqueness</subject><ispartof>Nonlinear analysis, 2011-10, Vol.74 (15), p.4961-4973</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-b285a46ad34feb160780e99ef00e30477367907855aaff2d2b1651bdb8cfeac33</citedby><cites>FETCH-LOGICAL-c356t-b285a46ad34feb160780e99ef00e30477367907855aaff2d2b1651bdb8cfeac33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2011.04.051$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24285285$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Yunxi</creatorcontrib><creatorcontrib>Lai, Shaoyong</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><title>Global weak solutions to the weakly dissipative Degasperis–Procesi equation</title><title>Nonlinear analysis</title><description>The global weak solutions for the Degasperis–Procesi equation with weakly dissipative term are investigated. Provided that u 0 ∈ H 1 ( R ) , y 0 = ( 1 − ∂ x 2 ) u 0 ∈ M ( R ) , supp y 0 − ⊂ ( − ∞ , x 0 ) and supp y 0 + ⊂ ( x 0 , ∞ ) , the existence and uniqueness of global weak solutions for the equation are shown to be true in the space W l o c 1 , ∞ ( R + × R ) ∩ L l o c ∞ ( R + ; H 1 ( R ) ) .</description><subject>Dissipation</subject><subject>Exact sciences and technology</subject><subject>Existence</subject><subject>Global weak solution</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Nonlinearity</subject><subject>Sciences and techniques of general use</subject><subject>The weakly dissipative Degasperis–Procesi equation</subject><subject>Uniqueness</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KxEAMxgdRcF29e-xFPLVm2k7b9Sb-B0UPCt6GdJrqrN3OOukq3nwH39AncdYVb0IgEH7fl-QTYldCIkEWB9OkxyQFKRPIE1ByTYxkVWaxSqVaFyPIijRWefGwKbaYpwAgy6wYievzztXYRW-EzxG7bjFY13M0uGh4op9p9x41ltnOcbCvFJ3QI_KcvOWvj89b7wyxjehlgUvhtthosWPa-e1jcX92end8EV_dnF8eH13FJlPFENdppTAvsMnylmpZQFkBTSbUAlAGeRkuKydhqBRi26ZNGhgl66auTEtosmws9le-c-9eFsSDnlk21HXYk1uwrqpJnlYlFIGEFWm8Y_bU6rm3M_TvWoJeBqenuke9DE5DrkNwQbL3a45ssGs99sbyny4NzipU4A5XHIVPXy15zcZSb6ixnsygG2f_X_INmI2D3g</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Guo, Yunxi</creator><creator>Lai, Shaoyong</creator><creator>Wang, Ying</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111001</creationdate><title>Global weak solutions to the weakly dissipative Degasperis–Procesi equation</title><author>Guo, Yunxi ; Lai, Shaoyong ; Wang, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-b285a46ad34feb160780e99ef00e30477367907855aaff2d2b1651bdb8cfeac33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Dissipation</topic><topic>Exact sciences and technology</topic><topic>Existence</topic><topic>Global weak solution</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Nonlinearity</topic><topic>Sciences and techniques of general use</topic><topic>The weakly dissipative Degasperis–Procesi equation</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yunxi</creatorcontrib><creatorcontrib>Lai, Shaoyong</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yunxi</au><au>Lai, Shaoyong</au><au>Wang, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global weak solutions to the weakly dissipative Degasperis–Procesi equation</atitle><jtitle>Nonlinear analysis</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>74</volume><issue>15</issue><spage>4961</spage><epage>4973</epage><pages>4961-4973</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>The global weak solutions for the Degasperis–Procesi equation with weakly dissipative term are investigated. Provided that u 0 ∈ H 1 ( R ) , y 0 = ( 1 − ∂ x 2 ) u 0 ∈ M ( R ) , supp y 0 − ⊂ ( − ∞ , x 0 ) and supp y 0 + ⊂ ( x 0 , ∞ ) , the existence and uniqueness of global weak solutions for the equation are shown to be true in the space W l o c 1 , ∞ ( R + × R ) ∩ L l o c ∞ ( R + ; H 1 ( R ) ) .</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2011.04.051</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2011-10, Vol.74 (15), p.4961-4973
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_889428706
source Elsevier ScienceDirect Journals Complete
subjects Dissipation
Exact sciences and technology
Existence
Global weak solution
Mathematical analysis
Mathematics
Nonlinearity
Sciences and techniques of general use
The weakly dissipative Degasperis–Procesi equation
Uniqueness
title Global weak solutions to the weakly dissipative Degasperis–Procesi equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A09%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20weak%20solutions%20to%20the%20weakly%20dissipative%20Degasperis%E2%80%93Procesi%20equation&rft.jtitle=Nonlinear%20analysis&rft.au=Guo,%20Yunxi&rft.date=2011-10-01&rft.volume=74&rft.issue=15&rft.spage=4961&rft.epage=4973&rft.pages=4961-4973&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2011.04.051&rft_dat=%3Cproquest_cross%3E889428706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889428706&rft_id=info:pmid/&rft_els_id=S0362546X11002550&rfr_iscdi=true