Measuring the light emission profile in organic light-emitting diodes with nanometre spatial resolution
Determining the precise shape of the emission profile across the thickness of the active layer in organic light-emitting diodes is of importance for device optimization and assessing the validity of advanced device models. We present a comprehensive method for accurately measuring the shape of the e...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2010-05, Vol.4 (5), p.329-335 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Determining the precise shape of the emission profile across the thickness of the active layer in organic light-emitting diodes is of importance for device optimization and assessing the validity of advanced device models. We present a comprehensive method for accurately measuring the shape of the emission profile, the intrinsic spectrum of emitting dipoles and the emitting dipole orientation. The method uses a microcavity light outcoupling model, which includes self-absorption and optical anisotropy, and is based on the full wavelength, angle and polarization resolved emission intensity. Application to blue (polyfluorene-based) and orange-red (NRS-PPV) polymer organic light-emitting diodes reveals a peaked shape of the emission profile. A significant voltage and layer thickness dependence of the peak positions is observed, with a demonstrated resolution better than 5 nm.
Precise spatial characterization of the origin of light emission from organic light-emitting diodes is important for improving the design of future devices and gaining valuable insight into their operation. Here, a characterization scheme that achieves this task with a spatial resolution better than 5 nm is reported. |
---|---|
ISSN: | 1749-4885 1749-4893 |
DOI: | 10.1038/nphoton.2010.32 |