Robust support vector regression for biophysical variable estimation from remotely sensed images

This letter introduces the epsiv-Huber loss function in the support vector regression (SVR) formulation for the estimation of biophysical parameters extracted from remotely sensed data. This cost function can handle the different types of noise contained in the dataset. The method is successfully co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2006-07, Vol.3 (3), p.339-343
Hauptverfasser: Camps-Valls, G., Bruzzone, L., Rojo-Alvarez, J.L., Melgani, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter introduces the epsiv-Huber loss function in the support vector regression (SVR) formulation for the estimation of biophysical parameters extracted from remotely sensed data. This cost function can handle the different types of noise contained in the dataset. The method is successfully compared to other cost functions in the SVR framework, neural networks and classical bio-optical models for the particular case of the estimation of ocean chlorophyll concentration from satellite remote sensing data. The proposed model provides more accurate, less biased, and improved robust estimation results on the considered case study, especially significant when few in situ measurements are available
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2006.871748