Influence of linear birefringence in the computation of scattering phase functions

Birefringent media, like biological tissues, are usually assumed to be uniaxial. For biological tissues, the influence of linear birefringence on the scattering phase function is assumed to be neglectable. In order to examine this, a numerical study of the influence of linear birefringence on the sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Biomedical Optics 2010-09, Vol.15 (5), p.055010-055010
Hauptverfasser: ormaz, Milos, Stamm, Tobias, Jenny, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Birefringent media, like biological tissues, are usually assumed to be uniaxial. For biological tissues, the influence of linear birefringence on the scattering phase function is assumed to be neglectable. In order to examine this, a numerical study of the influence of linear birefringence on the scattering phase function and the resulting backscattering Mueller matrices was performed. It is assumed that the media consist of spherical scattering particles embedded in a nonabsorbing medium, which allows us to employ the Lorenz-Mie theory. In the Monte Carlo framework, the influence of linear birefringence on the components of the electric field vector is captured through the Jones N-matrix formalism. The Lorenz-Mie theory indicates that a given linear birefringence value has a bigger impact on the scattering phase function for large particles. This conclusion is further supported by Monte Carlo simulations, where the phase function was calculated based on the refractive index once in the ordinary direction and once in the extraordinary one. For large particles, comparisons of the resulting backscattering Mueller matrices show significant differences even for small values.
ISSN:1083-3668
1560-2281
DOI:10.1117/1.3503475