TaN and hbox Al 2 hbox O 3 Sidewall Gate-Etch Damage Influence on Program, Erase, and Retention of Sub-50-nm TANOS nand Flash Memory Cells
The sidewall gate-etch damage influence on the electrical behavior of 48-nm hbox TaN / hbox Al 2 hbox O 3 / hbox SiN / hbox SiO 2 / hbox Si (TANOS) nand charge-trapping memory cells is investigated in detail. This etch damage occurs at the sidewall of the high work-function TaN metal gate and high-...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2011-06, Vol.58 (6), p.1728-1734 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The sidewall gate-etch damage influence on the electrical behavior of 48-nm hbox TaN / hbox Al 2 hbox O 3 / hbox SiN / hbox SiO 2 / hbox Si (TANOS) nand charge-trapping memory cells is investigated in detail. This etch damage occurs at the sidewall of the high work-function TaN metal gate and high- k hbox Al 2 hbox O 3 blocking-oxide layers and adversely affects the electrical performance and the mechanical stability of small-ground-rule TANOS cells. Both issues could be solved for 48-nm TANOS cells by the introduction of a new integration scheme, which includes a removable encapsulation liner. This SiN liner protects the TaN sidewall from the etch damage during the aggressive hbox Al 2 hbox O 3 high- k etch process. The optimum of the 48-nm electrical cell performance was found for a 4-nm encapsulation liner thickness. In contrast to 48-nm TANOS cells, the encapsulation liner thickness does not affect the electrical performance of large 5- mu hbox m -long-and-wide memory cells. The memory cell performance dependence on the TANOS liner thickness and memory cell size is explained by a damaged hbox Al 2 hbox O 3 region approximately 3-4 nm thick at the block oxide side wall. As a result, the reported etch damage exhibits a new scaling issue for TANOS memory cells around the 20-nm technology node when the total encapsulation liner thickness approaches half of the memory cell length. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2011.2121070 |