Ekeland’s variational principle for vectorial multivalued mappings in a uniform space

In this paper, we establish Ekeland’s variational principle and an equilibrium version of Ekeland’s variational principle for vectorial multivalued mappings in the setting of separated, sequentially complete uniform spaces. Our approaches and results are different from those in Chen et al. (2008), H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2011-10, Vol.74 (15), p.5057-5068
Hauptverfasser: Lin, Lai-Jiu, Wang, Sung-Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we establish Ekeland’s variational principle and an equilibrium version of Ekeland’s variational principle for vectorial multivalued mappings in the setting of separated, sequentially complete uniform spaces. Our approaches and results are different from those in Chen et al. (2008), Hamel (2005), and Lin and Chuang (2010) [13–15]. As applications of our results, we study vectorial Caristi’s fixed point theorems and Takahashi’s nonconvex minimization theorems for multivalued mappings and their equivalent forms in a separated, sequentially complete uniform space. We also apply our results to study maximal element theorems, which are unified methods of several variational inclusion problems. Our results contain many known results in the literature Fang (1996) [21], and will have many applications in nonlinear analysis.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2011.04.071