On the vortical structures and behaviour of inclined elliptic jets
A study has been carried out to clarify vortical structures and behaviour resultant from imposing inclined exits along either the major or minor plane of an elliptic nozzle. Laser-induced fluorescence (LIF) flow visualizations show production of inclined vortex roll-ups along the inclined planes, wi...
Gespeichert in:
Veröffentlicht in: | European journal of mechanics, B, Fluids B, Fluids, 2011-07, Vol.30 (4), p.437-450 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A study has been carried out to clarify vortical structures and behaviour resultant from imposing inclined exits along either the major or minor plane of an elliptic nozzle. Laser-induced fluorescence (LIF) flow visualizations show production of inclined vortex roll-ups along the inclined planes, with corresponding narrowing of jet columns along the non-inclined planes. Minor-plane inclined nozzles result in significant growths in the jet spread along the inclined plane, while major-plane inclined nozzles produce little variations. Formation of rib structures is observed to be suppressed in minor-plane inclined nozzles and linked to braid vortices inducing the formation of streamwise vortices along the minor plane. Particle-image velocimetry measurements show that increasing the incline angle in major-plane inclined nozzles reduce the strengths of the discrete vortex roll-ups, while the opposite occurs in minor-plane inclined nozzles. Although Reynolds shear stress variations correspond well with changes in incline angle and vortex roll-up strength in major-plane inclined nozzles, they demonstrate a non-monotonic relationship in minor-plane inclined nozzles. LIF visualizations further clarify how strong asymmetric interactions between the inclined vortex roll-ups and braid vortices lead to suppression of axis-switching in major-plane inclined nozzles but not in minor-plane inclined nozzles. The more complex flow behaviour in the latter is responsible for the non-linear relationship in Reynolds shear stress levels observed earlier. Comparisons of the half-jet width profiles confirm the suppression of axis-switching in major-plane inclined nozzles only, while momentum thickness profiles show significant variations in the mixing layer characteristics between major- and minor-plane inclined nozzles. |
---|---|
ISSN: | 0997-7546 1873-7390 |
DOI: | 10.1016/j.euromechflu.2011.04.006 |