A Low Complexity Adaptive Algorithm for Eigenspace-Based Two-Dimensional Direction of Arrival Tracking

In this paper, we present a low complexity, yet accurate adaptive algorithm for the tracking of two-dimensional (2-D) direction of arrival (DOAs) based on a uniform rectangular array (URA). The new algorithm is a novel hybrid of tracking and beamforming processes by making use of three stages of one...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2009/08/01, Vol.E92.A(8), pp.2097-2106
Hauptverfasser: WU, Kuo-Hsiung, FANG, Wen-Hsien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a low complexity, yet accurate adaptive algorithm for the tracking of two-dimensional (2-D) direction of arrival (DOAs) based on a uniform rectangular array (URA). The new algorithm is a novel hybrid of tracking and beamforming processes by making use of three stages of one-dimensional (1-D) DOA tracking algorithms — in a hierarchical tree structure — to determine the two DOA components iteratively in a coarse-fine manner. In between every other 1-D DOA tracking algorithm, a complementary orthogonal beamforming process is invoked to partition the incoming signals into appropriate groups to enhance the tracking accuracy. Since the new algorithm only involves the 1-D subspace-based DOA tracking algorithm, the overall complexity is substantially less than the direct two-dimensional (2-D) extension of the existing 1-D DOA tracking algorithms, which requires an update of higher-dimensional vectors followed by a higher-dimensional eigendecomposition or a 2-D search. Furthermore, with the tree-structured DOA tracking scheme, the tracked 2-D DOA components are automatically paired without extra computational overhead. Furnished simulations show that the new algorithm can provide satisfactory tracking performance in various scenarios.
ISSN:0916-8508
1745-1337
1745-1337
DOI:10.1587/transfun.E92.A.2097