Counting Rectangular Drawings or Floorplans in Polynomial Time
A subdivision of a rectangle into rectangular faces with horizontal and vertical line segments is called a rectangular drawing or floorplan. It has been an open problem to determine whether there exist a polynomial time algorithm for computing R(n). We affirmatively solve the problem, that is, we in...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2009/04/01, Vol.E92.A(4), pp.1115-1120 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A subdivision of a rectangle into rectangular faces with horizontal and vertical line segments is called a rectangular drawing or floorplan. It has been an open problem to determine whether there exist a polynomial time algorithm for computing R(n). We affirmatively solve the problem, that is, we introduce an O(n4)-time and O(n3)-space algorithm for R(n). The algorithm is based on a recurrence for R(n), which is the main result of the paper. We also implement our algorithm and computed R(n) for n ≤ 3000. |
---|---|
ISSN: | 0916-8508 1745-1337 1745-1337 |
DOI: | 10.1587/transfun.E92.A.1115 |