Uniform quasi-concavity in probabilistic constrained stochastic programming

A probabilistic constrained stochastic linear programming problem is considered, where the rows of the random technology matrix are independent and normally distributed. The quasi-concavity of the constraining function needed for the convexity of the problem is ensured if the factors of the function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research letters 2011-05, Vol.39 (3), p.188-192
Hauptverfasser: Prékopa, András, Yoda, Kunikazu, Subasi, Munevver Mine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A probabilistic constrained stochastic linear programming problem is considered, where the rows of the random technology matrix are independent and normally distributed. The quasi-concavity of the constraining function needed for the convexity of the problem is ensured if the factors of the function are uniformly quasi-concave. A necessary and sufficient condition is given for that property to hold. It is also shown, through numerical examples, that such a special problem still has practical application in optimal portfolio construction.
ISSN:0167-6377
1872-7468
DOI:10.1016/j.orl.2011.03.007