Uniform quasi-concavity in probabilistic constrained stochastic programming
A probabilistic constrained stochastic linear programming problem is considered, where the rows of the random technology matrix are independent and normally distributed. The quasi-concavity of the constraining function needed for the convexity of the problem is ensured if the factors of the function...
Gespeichert in:
Veröffentlicht in: | Operations research letters 2011-05, Vol.39 (3), p.188-192 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A probabilistic constrained stochastic linear programming problem is considered, where the rows of the random technology matrix are independent and normally distributed. The quasi-concavity of the constraining function needed for the convexity of the problem is ensured if the factors of the function are uniformly quasi-concave. A necessary and sufficient condition is given for that property to hold. It is also shown, through numerical examples, that such a special problem still has practical application in optimal portfolio construction. |
---|---|
ISSN: | 0167-6377 1872-7468 |
DOI: | 10.1016/j.orl.2011.03.007 |