Road vehicle state estimation using low-cost GPS/INS

Assuming known vehicle parameters, this paper proposes an innovative integrated Kalman filter (IKF) scheme to estimate vehicle dynamics, in particular the sideslip, the heading and the longitudinal velocity. The IKF is compared with the 2DoF linear bicycle model, the triple Kalman filter (KF) and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanical systems and signal processing 2011-08, Vol.25 (6), p.1988-2004
Hauptverfasser: Leung, King Tin, Whidborne, James F., Purdy, David, Barber, Phil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2004
container_issue 6
container_start_page 1988
container_title Mechanical systems and signal processing
container_volume 25
creator Leung, King Tin
Whidborne, James F.
Purdy, David
Barber, Phil
description Assuming known vehicle parameters, this paper proposes an innovative integrated Kalman filter (IKF) scheme to estimate vehicle dynamics, in particular the sideslip, the heading and the longitudinal velocity. The IKF is compared with the 2DoF linear bicycle model, the triple Kalman filter (KF) and a model-based KF (MKF) in a simulation environment. Simulation results show that the proposed IKF is superior to other KF designs (both Kinematic KF and MKF) on state estimation when tyre characteristics are within the linear region (i.e. manoeuvres below 55 kph).
doi_str_mv 10.1016/j.ymssp.2010.08.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_889407539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327010002888</els_id><sourcerecordid>889407539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-3adedc75f1487943391015db16a2fb484850134b3188535b01f36c120f2b76ee3</originalsourceid><addsrcrecordid>eNp9kDFPwzAUhC0EEqXwC1iyMSV9jh3HGRhQBaVSBYjCbCXOC7hK42K7Rf33uJSZ6UlPd6e7j5BrChkFKiarbL_2fpPlED8gMwB2QkYUKpHSnIpTMgIpZcryEs7JhfcrAKg4iBHhr7Zukx1-Gt1j4kMdMEEfzLoOxg7J1pvhI-ntd6qtD8nsZTmZPy0vyVlX9x6v_u6YvD_cv00f08XzbD69W6SacxFSVrfY6rLoKJdlxRmrYtmibaio867hkssCKOMNo1IWrGiAdkxomkOXN6VAZGNyc8zdOPu1jbXU2niNfV8PaLdeSRlHlAWropIdldpZ7x12auPiBrdXFNQBkVqpX0TqgEiBVBFRdN0eXRhH7Aw65bXBQWNrHOqgWmv-9f8AZ5hufA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889407539</pqid></control><display><type>article</type><title>Road vehicle state estimation using low-cost GPS/INS</title><source>Elsevier ScienceDirect Journals</source><creator>Leung, King Tin ; Whidborne, James F. ; Purdy, David ; Barber, Phil</creator><creatorcontrib>Leung, King Tin ; Whidborne, James F. ; Purdy, David ; Barber, Phil</creatorcontrib><description>Assuming known vehicle parameters, this paper proposes an innovative integrated Kalman filter (IKF) scheme to estimate vehicle dynamics, in particular the sideslip, the heading and the longitudinal velocity. The IKF is compared with the 2DoF linear bicycle model, the triple Kalman filter (KF) and a model-based KF (MKF) in a simulation environment. Simulation results show that the proposed IKF is superior to other KF designs (both Kinematic KF and MKF) on state estimation when tyre characteristics are within the linear region (i.e. manoeuvres below 55 kph).</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2010.08.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computer simulation ; Geographic information systems ; Global Positioning System ; GPS ; INS ; IPG CarMaker ; Kalman filter ; Kalman filters ; Low-cost ; Mechanical systems ; Satellite navigation systems ; State estimation ; Vehicles</subject><ispartof>Mechanical systems and signal processing, 2011-08, Vol.25 (6), p.1988-2004</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-3adedc75f1487943391015db16a2fb484850134b3188535b01f36c120f2b76ee3</citedby><cites>FETCH-LOGICAL-c446t-3adedc75f1487943391015db16a2fb484850134b3188535b01f36c120f2b76ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0888327010002888$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Leung, King Tin</creatorcontrib><creatorcontrib>Whidborne, James F.</creatorcontrib><creatorcontrib>Purdy, David</creatorcontrib><creatorcontrib>Barber, Phil</creatorcontrib><title>Road vehicle state estimation using low-cost GPS/INS</title><title>Mechanical systems and signal processing</title><description>Assuming known vehicle parameters, this paper proposes an innovative integrated Kalman filter (IKF) scheme to estimate vehicle dynamics, in particular the sideslip, the heading and the longitudinal velocity. The IKF is compared with the 2DoF linear bicycle model, the triple Kalman filter (KF) and a model-based KF (MKF) in a simulation environment. Simulation results show that the proposed IKF is superior to other KF designs (both Kinematic KF and MKF) on state estimation when tyre characteristics are within the linear region (i.e. manoeuvres below 55 kph).</description><subject>Computer simulation</subject><subject>Geographic information systems</subject><subject>Global Positioning System</subject><subject>GPS</subject><subject>INS</subject><subject>IPG CarMaker</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>Low-cost</subject><subject>Mechanical systems</subject><subject>Satellite navigation systems</subject><subject>State estimation</subject><subject>Vehicles</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAUhC0EEqXwC1iyMSV9jh3HGRhQBaVSBYjCbCXOC7hK42K7Rf33uJSZ6UlPd6e7j5BrChkFKiarbL_2fpPlED8gMwB2QkYUKpHSnIpTMgIpZcryEs7JhfcrAKg4iBHhr7Zukx1-Gt1j4kMdMEEfzLoOxg7J1pvhI-ntd6qtD8nsZTmZPy0vyVlX9x6v_u6YvD_cv00f08XzbD69W6SacxFSVrfY6rLoKJdlxRmrYtmibaio867hkssCKOMNo1IWrGiAdkxomkOXN6VAZGNyc8zdOPu1jbXU2niNfV8PaLdeSRlHlAWropIdldpZ7x12auPiBrdXFNQBkVqpX0TqgEiBVBFRdN0eXRhH7Aw65bXBQWNrHOqgWmv-9f8AZ5hufA</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Leung, King Tin</creator><creator>Whidborne, James F.</creator><creator>Purdy, David</creator><creator>Barber, Phil</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110801</creationdate><title>Road vehicle state estimation using low-cost GPS/INS</title><author>Leung, King Tin ; Whidborne, James F. ; Purdy, David ; Barber, Phil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-3adedc75f1487943391015db16a2fb484850134b3188535b01f36c120f2b76ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computer simulation</topic><topic>Geographic information systems</topic><topic>Global Positioning System</topic><topic>GPS</topic><topic>INS</topic><topic>IPG CarMaker</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>Low-cost</topic><topic>Mechanical systems</topic><topic>Satellite navigation systems</topic><topic>State estimation</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leung, King Tin</creatorcontrib><creatorcontrib>Whidborne, James F.</creatorcontrib><creatorcontrib>Purdy, David</creatorcontrib><creatorcontrib>Barber, Phil</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leung, King Tin</au><au>Whidborne, James F.</au><au>Purdy, David</au><au>Barber, Phil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Road vehicle state estimation using low-cost GPS/INS</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>25</volume><issue>6</issue><spage>1988</spage><epage>2004</epage><pages>1988-2004</pages><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>Assuming known vehicle parameters, this paper proposes an innovative integrated Kalman filter (IKF) scheme to estimate vehicle dynamics, in particular the sideslip, the heading and the longitudinal velocity. The IKF is compared with the 2DoF linear bicycle model, the triple Kalman filter (KF) and a model-based KF (MKF) in a simulation environment. Simulation results show that the proposed IKF is superior to other KF designs (both Kinematic KF and MKF) on state estimation when tyre characteristics are within the linear region (i.e. manoeuvres below 55 kph).</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2010.08.003</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-3270
ispartof Mechanical systems and signal processing, 2011-08, Vol.25 (6), p.1988-2004
issn 0888-3270
1096-1216
language eng
recordid cdi_proquest_miscellaneous_889407539
source Elsevier ScienceDirect Journals
subjects Computer simulation
Geographic information systems
Global Positioning System
GPS
INS
IPG CarMaker
Kalman filter
Kalman filters
Low-cost
Mechanical systems
Satellite navigation systems
State estimation
Vehicles
title Road vehicle state estimation using low-cost GPS/INS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A12%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Road%20vehicle%20state%20estimation%20using%20low-cost%20GPS/INS&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Leung,%20King%20Tin&rft.date=2011-08-01&rft.volume=25&rft.issue=6&rft.spage=1988&rft.epage=2004&rft.pages=1988-2004&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2010.08.003&rft_dat=%3Cproquest_cross%3E889407539%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889407539&rft_id=info:pmid/&rft_els_id=S0888327010002888&rfr_iscdi=true