Road vehicle state estimation using low-cost GPS/INS

Assuming known vehicle parameters, this paper proposes an innovative integrated Kalman filter (IKF) scheme to estimate vehicle dynamics, in particular the sideslip, the heading and the longitudinal velocity. The IKF is compared with the 2DoF linear bicycle model, the triple Kalman filter (KF) and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanical systems and signal processing 2011-08, Vol.25 (6), p.1988-2004
Hauptverfasser: Leung, King Tin, Whidborne, James F., Purdy, David, Barber, Phil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Assuming known vehicle parameters, this paper proposes an innovative integrated Kalman filter (IKF) scheme to estimate vehicle dynamics, in particular the sideslip, the heading and the longitudinal velocity. The IKF is compared with the 2DoF linear bicycle model, the triple Kalman filter (KF) and a model-based KF (MKF) in a simulation environment. Simulation results show that the proposed IKF is superior to other KF designs (both Kinematic KF and MKF) on state estimation when tyre characteristics are within the linear region (i.e. manoeuvres below 55 kph).
ISSN:0888-3270
1096-1216
DOI:10.1016/j.ymssp.2010.08.003