Preparation and physical characterization of strongly swellable oligo(oxyethylene) lignin hydrogels

Highly swellable, mechanically stable hydrogels were obtained by cross-linking different technical lignins with poly(ethylene) glycol diglycidyl ether (PEGDGE). The gelation time and the properties of the products can be controlled by the extent of pre-oxidation and the cross-linking conditions, nam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Holzforschung 2011-05, Vol.65 (3), p.309-317
Hauptverfasser: Passauer, Lars, Fischer, Klaus, Liebner, Falk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Highly swellable, mechanically stable hydrogels were obtained by cross-linking different technical lignins with poly(ethylene) glycol diglycidyl ether (PEGDGE). The gelation time and the properties of the products can be controlled by the extent of pre-oxidation and the cross-linking conditions, namely the dynamic viscosity η*, storage and loss modulus (G′; G″), and loss factor tan δ. The highest free swelling capacities (FSC) of up to 50 g water per g xerogel were obtained from pre-oxidized pine kraft lignin Indulin® AT and spruce organosolv lignin. Dynamic rheological measurements confirmed the typical rheological behaviour of gel structures, i.e. a linear decrease of dynamic viscosity about three orders of magnitude within a frequency range of 0.08 and 20 s-1. The results furthermore revealed a good mechanical sturdiness of the cross-linked lignin hydrogels. Sandy soils supplemented with small quantities of the hydrogels were found to feature a significantly increased plant-available water content. Based on the observed effects, oligo(oxyethylene) lignins are promising materials with respect to a prolonged water retention in soils.
ISSN:0018-3830
1437-434X
DOI:10.1515/hf.2011.044