Workforce-constrained maintenance scheduling for military aircraft fleet: a case study

The problem is related to a fleet of military aircraft with a certain flying program in which the availability of the aircraft sufficient to meet the flying program is a challenging issue. During the pre- or after-flight inspections, some component failures of the aircraft may be found. In such case...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of operations research 2011-06, Vol.186 (1), p.295-316
Hauptverfasser: Safaei, Nima, Banjevic, Dragan, Jardine, Andrew K. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem is related to a fleet of military aircraft with a certain flying program in which the availability of the aircraft sufficient to meet the flying program is a challenging issue. During the pre- or after-flight inspections, some component failures of the aircraft may be found. In such cases, the aircraft are sent to the repair shop to be scheduled for maintenance jobs, consisting of failure repairs or preventive maintenance tasks. The objective is to schedule the jobs in such a way that sufficient number of aircrafts is available for the next flight programs. The main resource, as well as the main constraint, in the shop is skilled-workforce. The problem is formulated as a mixed-integer mathematical programming model in which the network flow structure is used to simulate the flow of aircraft between missions, hanger and repair shop. The proposed model is solved using the classical Branch-and-Bound method and its performance is verified and analyzed in terms of a number of test problems adopted from the real data. The results empirically supported practical utility of the proposed model.
ISSN:0254-5330
1572-9338
DOI:10.1007/s10479-011-0885-4