The overexpression in Arabidopsis thaliana of a Trichoderma harzianum gene that modulates glucosidase activity, and enhances tolerance to salt and osmotic stresses
Using the TrichoEST database, generated in a previous functional genomics project from the beneficial filamentous fungus Trichoderma harzianum, a gene named Thkel1, which codes for a putative kelch-repeat protein, was isolated and characterized. Silencing of this gene in T. harzianum leads to a redu...
Gespeichert in:
Veröffentlicht in: | Journal of plant physiology 2011-07, Vol.168 (11), p.1295-1302 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using the TrichoEST database, generated in a previous functional genomics project from the beneficial filamentous fungus
Trichoderma harzianum, a gene named
Thkel1, which codes for a putative kelch-repeat protein, was isolated and characterized. Silencing of this gene in
T. harzianum leads to a reduction of glucosidase activity and mycelial growth under abiotic stress conditions. Expression of this gene in
Arabidopsis enhances plant tolerance to salt and osmotic stresses, accompanied by an increase in glucosidase activity and a reduction of abscisic acid levels compared to those observed in wild-type plants. Data presented throughout this article suggest the high value of
T. harzianum as a source of genes able to facilitate the achievement of producing plants resistant to abiotic stresses without alteration of their phenotype. |
---|---|
ISSN: | 0176-1617 1618-1328 |
DOI: | 10.1016/j.jplph.2011.01.027 |